81. Let $${a_1} = 0$$  and $${a_1},{a_2},{a_3},.....,{a_n}$$    be real numbers such that $$\left| {{a_i}} \right| = \left| {{a_{i - 1}} + 1} \right|$$   for all $$i$$ then the AM of the numbers $${a_1},{a_2},{a_3},.....,{a_n}$$    has the value $$A$$ where

A $$A < - \frac{1}{2}$$
B $$A < - 1$$
C $$A \geqslant - \frac{1}{2}$$
D $$A = - \frac{1}{2}$$
Answer :   $$A \geqslant - \frac{1}{2}$$
Discuss Question

82. Let $${a_1},{a_2},......{a_{10}}$$    be in A.P. and $${h_1},{h_2},......{h_{10}}$$    be in H.P. If $${a_1} = {h_1} = 2$$   and $${a_{10}} = {h_{10}} = 3,$$   then $${a_4}{h_7}$$  is

A 2
B 3
C 5
D 6
Answer :   6
Discuss Question

83. Let $${a_1},{a_2},.....,{a_{30}}$$    be an A.P., $$S = \sum\limits_{i = 1}^{30} {{a_i}} {\text{ and }}T = \sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}.} $$      If $${a_5} = 27{\text{ and }}S - 2T = 75,$$     then $${a_{10}}$$ is equal to:

A 52
B 57
C 47
D 42
Answer :   52
Discuss Question

84. $$\sum\limits_{k = 1}^n {k{{\left( {1 + \frac{1}{n}} \right)}^{k - 1}} = } $$

A $$n\left( {n - 1} \right)$$
B $$n\left( {n + 1} \right)$$
C $$n^2$$
D $$\left( {n - 1} \right)^2$$
Answer :   $$n^2$$
Discuss Question

85. In the quadratic equation $$a{x^2} + bx + c = 0,\Delta = {b^2} - 4ac{\text{ and }}\alpha {\text{ + }}\beta {\text{,}}{\alpha ^2} + {\beta ^2},{\alpha ^3} + {\beta ^3},$$            are in G.P. where $$\alpha ,\beta $$  are the root of $$a{x^2} + bx + c = 0,$$    then

A $$\Delta \ne 0$$
B $$b\Delta = 0$$
C $$c\Delta = 0$$
D $$\Delta = 0$$
Answer :   $$c\Delta = 0$$
Discuss Question

86. If the sum to infinity of the series, $$1 + 4x + 7{x^2} + 10{x^3} + .....,\,{\text{is}}\frac{{35}}{{16}},$$       where $$\left| x \right| < 1,$$  then $$x$$ equals to

A $$\frac{{19}}{7}$$
B $$\frac{{1}}{5}$$
C $$\frac{{1}}{4}$$
D None of these
Answer :   $$\frac{{1}}{5}$$
Discuss Question

87. Let $${S_n}\left( {1 \leqslant n \leqslant 9} \right)$$   denotes the sum of $$n$$ terms of series $$1 + 22 + 333 + . . . . . + 9999999999,$$       then for $${2 \leqslant n \leqslant 9}$$

A $${S_n} - {S_{n - 1}} = \frac{1}{9}\left( {{{10}^n} - {n^2} + n} \right)$$
B $${S_n} = \frac{1}{9}\left( {{{10}^n} - {n^2} + 2n - 2} \right)$$
C $$9\left( {{S_n} - {S_{n - 1}}} \right) = n\left( {{{10}^n} - 1} \right)$$
D None of these
Answer :   $$9\left( {{S_n} - {S_{n - 1}}} \right) = n\left( {{{10}^n} - 1} \right)$$
Discuss Question

88. The sum of series $$\frac{1}{{2!}} - \frac{1}{{3!}} + \frac{1}{{4!}} - ......$$     upto infinity is

A $${e^{ - \frac{1}{2}}}$$
B $${e^{ + \frac{1}{2}}}$$
C $${e^{ - 2}}$$
D $${e^{ - 1}}$$
Answer :   $${e^{ - 1}}$$
Discuss Question

89. The sum of $$\frac{{\frac{1}{2} \cdot \frac{2}{2}}}{{{1^3}}} + \frac{{\frac{2}{2} \cdot \frac{3}{2}}}{{{1^3} + {2^3}}} + \frac{{\frac{3}{2} \cdot \frac{4}{2}}}{{{1^3} + {2^3} + {3^3}}} + .....$$        upto $$n$$ terms is equal to

A $$\frac{{n - 1}}{n}$$
B $$\frac{{n}}{n + 1}$$
C $$\frac{{n + 1}}{n + 2}$$
D $$\frac{{n + 1}}{n}$$
Answer :   $$\frac{{n}}{n + 1}$$
Discuss Question

90. For $$ - \pi < x < \pi ,$$   the values of $$x$$ which satisfy the relation $${11^{1 + \left| {\cos x} \right| + {{\cos }^2}x + \left| {{{\cos }^3}x} \right| + .....{\text{ upto }}\infty }} = 121$$       are given by

A $$ \pm \frac{\pi }{3}, \pm \frac{{2\pi }}{3}$$
B $$\frac{\pi }{3},\frac{{2\pi }}{4}$$
C $$\frac{\pi }{4},\frac{{3\pi }}{4}$$
D None of these
Answer :   $$ \pm \frac{\pi }{3}, \pm \frac{{2\pi }}{3}$$
Discuss Question


Practice More MCQ Question on Maths Section