131.
If $${S_n}$$ denotes the sum of first $$n$$ terms of an A.P. whose first term is $$a$$ and $$\frac{{{S_{nx}}}}{{{S_x}}}$$ is independent of $$x,$$ then $${S_p} = $$
As given the series is
$$S = 1 + \frac{1}{8} + \frac{{1.3}}{{8.16}} + \frac{{1.3.5}}{{8.16.24}} + .....\,\infty $$
On comparing this series with
$$S = {\left( {1 + x} \right)^n} = 1 + nx + \frac{{n\left( {n - 1} \right)}}{{2\,!}}{x^2} + .....\,\infty ,$$
we get,
$$\eqalign{
& nx = \frac{1}{8}\,\,\,\,\,.....\left( 1 \right) \cr
& {\text{and }}\frac{{n\left( {n - 1} \right)}}{{2\,!}}{x^2} = \frac{{1.3}}{{8.16}}\,\,\,\,\,.....\left( 2 \right) \cr} $$
From Eqs. (1) and (2), we get
$$\eqalign{
& \frac{{\frac{{n\left( {n - 1} \right)}}{{2\,!}}{x^2}}}{{{n^2}{x^2}}} = \frac{{\frac{{1.3}}{{8.16}}}}{{\frac{1}{8} \cdot \frac{1}{8}}} \cr
& \Rightarrow \frac{{n - 1}}{{2n}} = \frac{3}{2} \cr
& \Rightarrow n - 1 = 3n \cr
& \Rightarrow n = - \frac{1}{2} \cr} $$
On putting this value in Eq. (i)
$$\eqalign{
& \Rightarrow \left( { - \frac{1}{2}} \right)x = \frac{1}{8} \cr
& \Rightarrow x = - \frac{1}{4}. \cr
& {\text{But, }}S = {\left( {1 + x} \right)_n} = {\left( {1 - \frac{1}{4}} \right)^{ - \frac{1}{2}}} \cr
& = {\left( {\frac{3}{4}} \right)^{ - \frac{1}{2}}} = \frac{2}{{\sqrt 3 }}. \cr} $$
133.
The perimeter of a triangle whose sides are in A.P. is $$21\,cm$$ and the product of lengths of the shortest side and the longest side exceeds the length of the other side by $$6\,cm.$$ The longest side of the triangle is
There are 50 factors. So, the co-efficient of $${x^{49}} = - 1 - 3 - 5 - ..... - 99.$$
135.
If $$x = 1 + a + {a^2} + .....$$ to infinity and $$y = 1 + b + {b^2} + .....$$ to infinity, where $$a, b$$ are proper fractions, then $$1 + ab + {a^2}{b^2} + .....$$ to infinity is equal :
If $$a,ar,a{r^2},a{r^3},.....$$ are in G.P., then sum of infinite G.P. $$ = a + ar + ..... + \infty = \frac{a}{{1 - r}}$$
where $$'a'$$ is the first term and $$'r'$$ is the common ratio of G.P.
Given, $$x = 1 + a + {a^2} + .....\,\infty $$
This is a G.P., with common ratio $$'a'.$$
$$\eqalign{
& \Rightarrow x = \frac{1}{{1 - a}} \cr
& \Rightarrow x - ax = 1 \cr
& \Rightarrow a = \frac{{x - 1}}{x} \cr} $$
Again, $$y = 1 + b + {b^2} + .....\,\infty $$
This is also a G.P., with common ratio $$'b'.$$
$$\eqalign{
& \Rightarrow y = \frac{1}{{1 - b}} \cr
& \Rightarrow b = \frac{{y - 1}}{y} \cr} $$
Now, consider $$1 + ab + {a^2}{b^2} + .....\,\infty $$
which is again $$a$$ G.P. with common ratio $$'ab'.$$
∴ Sum $$ = \frac{1}{{1 - ab}} = \frac{1}{{1 - \frac{{x - 1}}{x} \cdot \frac{{y - 1}}{y}}}$$
$$ = \frac{{xy}}{{xy - xy + x + y - 1}} = \frac{{xy}}{{x + y - 1}}$$
136.
Let $${a_1},{a_2},{a_3},.....,{a_{49}}$$ be in A.P. such that $$\sum\limits_{k = 0}^{12} {{a_{4k + 1}} = 416{\text{ and }}{a_9} + {a_{43}} = 66.{\text{ If }}a_1^2 + a_2^2 + ..... + a_{17}^2 = 140m,} $$ then $$m$$ is equal to :