131. If $${S_n}$$ denotes the sum of first $$n$$ terms of an A.P. whose first term is $$a$$ and $$\frac{{{S_{nx}}}}{{{S_x}}}$$ is independent of $$x,$$ then $${S_p} = $$

A $${P^3}$$
B $${P^2}a$$
C $$P{a^2}$$
D $${a^3}$$
Answer :   $${P^2}a$$
Discuss Question

132. What is the sum of the series $$1 + \frac{1}{8} + \frac{{1.3}}{{8.16}} + \frac{{1.3.5}}{{8.16.24}} + .....\,\infty \,?$$

A $$\frac{2}{{\sqrt 3 }}$$
B $${2\sqrt 3 }$$
C $$\frac{{\sqrt 3 }}{2}$$
D $$\frac{1}{{2 \sqrt 3 }}$$
Answer :   $$\frac{2}{{\sqrt 3 }}$$
Discuss Question

133. The perimeter of a triangle whose sides are in A.P. is $$21\,cm$$  and the product of lengths of the shortest side and the longest side exceeds the length of the other side by $$6\,cm.$$  The longest side of the triangle is

A $$1\,cm$$
B $$7\,cm$$
C $$13\,cm$$
D none
Answer :   $$13\,cm$$
Discuss Question

134. The co-efficient of $${x^{49}}$$ in the product $$\left( {x - 1} \right)\left( {x - 3} \right).....\left( {x - 99} \right)$$      is

A $$- 99^2$$
B $$1$$
C $$- 2500$$
D none of these
Answer :   $$- 2500$$
Discuss Question

135. If $$x = 1 + a + {a^2} + .....$$    to infinity and $$y = 1 + b + {b^2} + .....$$    to infinity, where $$a, b$$  are proper fractions, then $$1 + ab + {a^2}{b^2} + .....$$    to infinity is equal :

A $$\frac{{xy}}{{x + y - 1}}$$
B $$\frac{{xy}}{{x - y - 1}}$$
C $$\frac{{xy}}{{x - y + 1}}$$
D $$\frac{{xy}}{{x + y + 1}}$$
Answer :   $$\frac{{xy}}{{x + y - 1}}$$
Discuss Question

136. Let $${a_1},{a_2},{a_3},.....,{a_{49}}$$    be in A.P. such that $$\sum\limits_{k = 0}^{12} {{a_{4k + 1}} = 416{\text{ and }}{a_9} + {a_{43}} = 66.{\text{ If }}a_1^2 + a_2^2 + ..... + a_{17}^2 = 140m,} $$            then $$m$$ is equal to :

A 68
B 34
C 33
D 66
Answer :   34
Discuss Question

137. If $$\frac{{{a_2}{a_3}}}{{{a_1}{a_4}}} = \frac{{{a_2} + {a_3}}}{{{a_1} + {a_4}}} = 3\left( {\frac{{{a_2} - {a_3}}}{{{a_1} - {a_4}}}} \right)$$      then $${a_1},{a_2},{a_3},{a_4}$$   are in

A A.P.
B G.P.
C H.P.
D none of these
Answer :   H.P.
Discuss Question

138. The sum of the series $$\frac{2}{3} + \frac{8}{9} + \frac{{26}}{{27}} + \frac{{80}}{{81}} + ..... + n{\text{ terms is :}}$$

A $$n - \frac{1}{2}\left( {{3^n} - 1} \right)$$
B $$n + \frac{1}{2}\left( {{3^n} - 1} \right)$$
C $$n - \frac{1}{2}\left( {1 - {3^{- n}}} \right)$$
D $$n + \frac{1}{2}\left( {{3^{- n}} - 1} \right)$$
Answer :   $$n + \frac{1}{2}\left( {{3^{- n}} - 1} \right)$$
Discuss Question

139. The expression $$\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}{\text{is}}\left[ {a \ne b \ne 0} \right]$$     is
(where $$a$$ and $$b$$ are unequal non-zero numbers)

A A.M. between $$a$$ and $$b$$ if $$n = - 1$$
B G.M. between $$a$$ and $$b$$ if $$n = - \frac{1}{2}$$
C H.M. between $$a$$ and $$b$$ if $$n = 0$$
D all are correct
Answer :   G.M. between $$a$$ and $$b$$ if $$n = - \frac{1}{2}$$
Discuss Question

140. The sum of the series $$3.6 + 4.7 + 5.8 + . . . . .$$     upto $$\left( {n - 2} \right)$$  terms

A $${n^3} + {n^2} + n + 2$$
B $$\frac{1}{6}\left( {2{n^3} + 12{n^2} + 10n - 84} \right)$$
C $${n^3} + {n^2} + n$$
D None of these
Answer :   $$\frac{1}{6}\left( {2{n^3} + 12{n^2} + 10n - 84} \right)$$
Discuss Question


Practice More MCQ Question on Maths Section