1. For the hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant when $$\alpha $$ varies?

A abscissae of vertices
B abscissae of foci
C eccentricity
D directrix
Answer :   abscissae of foci
Discuss Question

2. The foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$$   and the hyperbola $$\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$$     coincide. Then the value of $${b^2}$$ is :

A 5
B 7
C 9
D 1
Answer :   7
Discuss Question

3. The normal to a curve at $$P\left( {x,\,y} \right)$$   meets the $$x$$-axis at $$G.$$  If the distance of $$G$$ from the origin is twice the abscissa of $$P,$$  then the curve is a :

A circle
B hyperbola
C ellipse
D parabola
Answer :   hyperbola
Discuss Question

4. If the line $$y = mx + \sqrt {{a^2}{m^2} - {b^2}} $$     touches the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$    at the point $$\varphi .$$ Then $$\varphi = \,?$$

A $${\sin ^{ - 1}}\left( m \right)$$
B $${\sin ^{ - 1}}\left( {\frac{a}{{bm}}} \right)$$
C $${\sin ^{ - 1}}\left( {\frac{b}{{am}}} \right)$$
D $${\sin ^{ - 1}}\left( {\frac{{bm}}{a}} \right)$$
Answer :   $${\sin ^{ - 1}}\left( {\frac{b}{{am}}} \right)$$
Discuss Question

5. The hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$   passes through the point $$\left( {2,\,3} \right)$$  and has the eccentricity $$2$$. Then the transverse axis of the hyperbola has the length :

A $$1$$
B $$3$$
C $$2$$
D $$4$$
Answer :   $$2$$
Discuss Question

6. Tangents are drawn to the hyperbola $$4{x^2} - {y^2} = 36$$    at the points $$P$$ and $$Q.$$  If these tangents intersect at the point $$T\left( {0,\,3} \right)$$  then the area (in square units) of $$\Delta PTQ$$   is :

A $$54\sqrt 3 $$
B $$60\sqrt 3 $$
C $$36\sqrt 5 $$
D $$45\sqrt 5 $$
Answer :   $$45\sqrt 5 $$
Discuss Question

7. If the line $$y = mx - 7\sqrt 3 $$    is normal to the hyperbola $$\frac{{{x^2}}}{{24}} - \frac{{{y^2}}}{{18}} = 1,$$   then a value of $$m$$ is :

A $$\frac{{\sqrt {5} }}{2}$$
B $$\frac{{\sqrt {15} }}{2}$$
C $$\frac{2}{{\sqrt 5 }}$$
D $$\frac{3}{{\sqrt 5 }}$$
Answer :   $$\frac{2}{{\sqrt 5 }}$$
Discuss Question

8. Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A $$\frac{{{a^2} + {b^2}}}{a}$$
B $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C $$\frac{{{a^2} + {b^2}}}{b}$$
D $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Answer :   $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Discuss Question

9. Consider a branch of the hyperbola $${x^2} - 2{y^2} - 2\sqrt 2 x - 4\sqrt 2 y - 6 = 0$$       with vertex at the point $$A.$$  Let $$B$$ be one of the end points of its latus rectum. If $$C$$ is the focus of the hyperbola nearest to the point $$A,$$  then the area of the triangle $$ABC$$  is :

A $$1 - \sqrt {\frac{2}{3}} $$
B $$\sqrt {\frac{3}{2}} - 1$$
C $$1 + \sqrt {\frac{2}{3}} $$
D $$\sqrt {\frac{3}{2}} + 1$$
Answer :   $$\sqrt {\frac{3}{2}} - 1$$
Discuss Question

10. If $$x = 9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Answer :   $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
Discuss Question


Practice More MCQ Question on Maths Section