1. The number of solution of $$\tan x + \sec x = 2\cos x$$     in $$\left[ {0,2\pi } \right)$$  is

A 2
B 3
C 0
D 1
Answer :   3
Discuss Question

2. Let $$S = \left\{ {x \in \left( { - \pi ,\pi } \right):x \ne 0, \pm \frac{\pi }{2}} \right\}.$$      The sum of all distinct solutions of the equation $$\sqrt 3 \sec x + {\text{cosec}}\,x + 2\left( {\tan x - \cot x} \right) = 0$$         in the set $$S$$ is equal to

A $$ - \frac{{7\pi }}{9}$$
B $$ - \frac{{2\pi }}{9}$$
C 0
D $$ \frac{{5\pi }}{9}$$
Answer :   0
Discuss Question

3. The number of distinct solutions of $$\sin 5\theta \cdot \cos 3\theta = \sin 9\theta \cdot \cos 7\theta $$      in $$\left[ {0,\frac{\pi }{2}} \right]$$  is

A 4
B 5
C 8
D 9
Answer :   9
Discuss Question

4. The least positive non-integral solution of the equation $$\sin \pi \left( {{x^2} + x} \right) = \sin \pi {x^2}{\text{ is}}$$

A rational
B irrational of the form $$\sqrt p $$
C irrational of the form $$\frac{{\sqrt p - 1}}{4},$$  where $$p$$ is an odd integer
D irrational of the form $$\frac{{\sqrt p + 1}}{4},$$  where $$p$$ is an even integer
Answer :   rational
Discuss Question

5. The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D none of these
Answer :   $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
Discuss Question

6. The number of integral values of $$k$$ for which the equation 7 $$\cos x + 5\sin x = 2k + 1$$     has a solution is

A 4
B 8
C 10
D 12
Answer :   8
Discuss Question

7. For $$x \in \left( {0,\pi } \right),$$   the equation $$\sin x + 2\sin 2x - \sin 3x = 3$$      has

A infinitely many solutions
B three solutions
C one solution
D no solution
Answer :   no solution
Discuss Question

8. The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A $$n\pi + \frac{\pi }{8}$$
B $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Answer :   $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
Discuss Question

9. If $$0 \leqslant x \leqslant 2\pi ,$$   then number of roots of equation $${e^{\sin x}} - {e^{ - \sin x}} = 4{\text{ is}}$$

A 0
B 1
C 2
D 4
Answer :   0
Discuss Question

10. The number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is

A 0
B 1
C 2
D 3
Answer :   2
Discuss Question


Practice More MCQ Question on Maths Section