143.
If $$a, b, c, d$$ are non-zero real numbers such that $$\left( {{a^2} + {b^2} + {c^2}} \right)\left( {{b^2} + {c^2} + {d^2}} \right) \leqslant {\left( {ab + bc + cd} \right)^2}$$ then $$a, b, c, d$$ are in
146.
If $$\log \left( {\frac{{5c}}{a}} \right),\log \left( {\frac{{3b}}{{5c}}} \right)$$ and $$\log \left( {\frac{a}{{3b}}} \right)$$ are in A.P., where $$a, b, c$$ are in G.P., then $$a, b, c$$ are the lengths of sides of
147.
An A.P. whose first term is unity and in which the sum of first half of any even number of terms to that of second half of the same number of terms is a constant ratio, then the common difference is :
Let $$S_n$$ denote the sum of $$n$$ terms of an A.P.
According to given
$$\eqalign{
& \frac{{{S_n}}}{{{S_{2n}} - {S_n}}} = k\,\,\,\forall n \geqslant 1 \cr
& \Rightarrow \frac{{{S_1}}}{{{S_2} - {S_1}}} = \frac{{{S_2}}}{{{S_4} - {S_2}}} \cr
& \Rightarrow {S_1}{S_4} - {S_1}{S_2} = S_2^2 - {S_1}{S_2} \cr
& \Rightarrow {S_1}{S_4} = S_2^2 \cr
& \Rightarrow a\frac{4}{2}\left[ {2a + \left( {4 - 1} \right)d} \right] = {\left( {a + a + d} \right)^2} \cr
& \Rightarrow a\left( {4a + 6d} \right) = {\left( {2a + d} \right)^2} \cr
& \Rightarrow 2ad = {d^2} \cr
& \Rightarrow 2a = d \cr} $$
Since $$a = 1 ,$$ we get $$d = 2$$
148.
The sum of an infinite geometric series is 2 and the sum of the geometric series made from the cubes of this infinite sereis is 24. Then the series is
A
$$3 + \frac{3}{2} - \frac{3}{4} + \frac{3}{8} - .....$$
B
$$3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + .....$$
C
$$3 - \frac{3}{2} + \frac{3}{4} - \frac{3}{8} + .....$$
Let first term = $$a,$$ common ratio = $$r,$$ where $$ – 1 < r < 1$$
Then, $$\frac{a}{{1 - r}} = 2\,\,{\text{and }}\frac{{{a^3}}}{{1 - {r^3}}} = 24$$
$$\eqalign{
& \therefore \frac{{1 - {r^3}}}{{{{\left( {1 - r} \right)}^3}}} = \frac{1}{3} \cr
& {\text{i}}{\text{.e}}{\text{., }}1 - 2r + {r^2} = 3\left( {1 + r + {r^2}} \right) \cr
& {\text{or, }}2{r^2} + 5r + 2 = 0 \cr
& \therefore r = - 2{\text{ or }}\frac{{ - 1}}{2}{\text{ As }} - 1 < r < 1 \cr
& \therefore {\text{we have }}r = - \frac{1}{2} \cr
& \therefore {\text{The series is }}3 - \frac{3}{2} + \frac{3}{4} - \frac{3}{8} + ..... \cr} $$
149.
If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$ terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$ is equal to:
$$\eqalign{
& \because \,\,x,y,z{\text{ are the }}{p^{{\text{th}}}},{q^{{\text{th}}}}{\text{ and }}{r^{{\text{th}}}}\,{\text{terms of an A}}{\text{.P}}{\text{.}} \cr
& \therefore \,\,\,x = A + \left( {p - 1} \right)D;y = A + \left( {q - 1} \right)D;z = A + \left( {r - 1} \right)D \cr
& \Rightarrow \,\,x - y = \left( {p - q} \right)D;y - z = \left( {q - r} \right)D;z - x = \left( {r - p} \right)D\,\,\,\,\,\,\,.....\left( 1 \right) \cr
& {\text{where }}A{\text{ is the first term and }}D{\text{ is the common difference}}{\text{.}} \cr
& {\text{Also }}x,y,z{\text{ are the }}{p^{{\text{th}}}},{q^{{\text{th}}}}{\text{ and }}{r^{{\text{th}}}}\,{\text{terms of a G}}{\text{.P}}{\text{.}} \cr
& \therefore \,\,x = A{R^{p - 1}},y = A{R^{q - 1}},z = A{R^{r - 1}} \cr
& \therefore \,\,{x^{y - z}}{y^{z - x}}{z^{x - y}} = {\left( {A{R^{p - 1}}} \right)^{y - z}}{\left( {A{R^{q - 1}}} \right)^{z - x}}{\left( {A{R^{r - 1}}} \right)^{x - y}} \cr
& = {A^{y - z + z - x + x - y}}{R^{\left( {p - 1} \right)\left( {y - z} \right) + \left( {q - 1} \right)\left( {z - x} \right) + \left( {r - 1} \right)\left( {x - y} \right)}} \cr
& = {A^0}{R^{\left( {p - 1} \right)\left( {q - r} \right)D + \left( {q - 1} \right)\left( {r - p} \right)D + \left( {r - 1} \right)\left( {p - q} \right)D}} \cr
& = {A^0}{R^0} = 1 \cr} $$
150.
$$ABC$$ is a right-angled triangle in which $$\angle B = {90^ \circ }$$ and $$BC = a.$$ If $$n$$ points $${L_1},{L_2},.....,{L_n}$$ on $$AB$$ are such that $$AB$$ is divided in $$n + 1$$ equal parts and $${L_1}{M_1},{L_2}{M_2},.....,{L_n}{M_n}$$ are line segments parallel to $$BC$$ and $${M_1},{M_2},.....,{M_n}$$ are on $$AC$$ then the sum of the lengths of $${L_1}{M_1},{L_2}{M_2},.....,{L_n}{M_n}$$ is