141. Let $$a, b, c$$  be in A.P. with a common difference $$d.$$ Then $${e^{\frac{1}{c}}},{e^{\frac{b}{{ac}}}},{e^{\frac{1}{a}}}$$  are in :

A G.P. with common ratio $$e^d$$
B G.P. with common ratio $${e^{\frac{1}{d}}}$$
C G.P. with common ratio $${e^{\frac{d}{{\left( {{b^2} - {d^2}} \right)}}}}$$
D A.P.
Answer :   G.P. with common ratio $${e^{\frac{d}{{\left( {{b^2} - {d^2}} \right)}}}}$$
Discuss Question

142. $${1^3} - {2^3} + {3^3} - {4^3} + ..... + {9^3} = $$

A 425
B $$- 425$$
C 475
D $$- 475$$
Answer :   425
Discuss Question

143. If $$a, b, c, d$$   are non-zero real numbers such that $$\left( {{a^2} + {b^2} + {c^2}} \right)\left( {{b^2} + {c^2} + {d^2}} \right) \leqslant {\left( {ab + bc + cd} \right)^2}$$          then $$a, b, c, d$$   are in

A A.P.
B G.P.
C H.P.
D none of these
Answer :   G.P.
Discuss Question

144. If in a series $${t_n} = \frac{n}{{\left( {n + 1} \right)!}}$$   then $$\sum\limits_{n = 1}^{20} {{t_n}} $$  is equal to

A $$\frac{{20!\, - 1}}{{20!}}$$
B $$\frac{{21!\, - 1}}{{21!}}$$
C $$\frac{1}{{2\left( {n - 1} \right)!}}$$
D none of these
Answer :   $$\frac{{21!\, - 1}}{{21!}}$$
Discuss Question

145. If $$x = {\log_5}3 + {\log _7}5 + {\log _9}7$$      then

A $$x \geqslant \frac{3}{2}$$
B $$x \geqslant \frac{1}{{\root 3 \of 2 }}$$
C $$x \geqslant \frac{3}{{\root 3 \of 2 }}$$
D none of these
Answer :   $$x \geqslant \frac{3}{{\root 3 \of 2 }}$$
Discuss Question

146. If $$\log \left( {\frac{{5c}}{a}} \right),\log \left( {\frac{{3b}}{{5c}}} \right)$$    and $$\log \left( {\frac{a}{{3b}}} \right)$$  are in A.P., where $$a, b, c$$  are in G.P., then $$a, b, c$$  are the lengths of sides of

A an isosceles triangle
B an equilateral triangle
C a scalene triangle
D none of these
Answer :   none of these
Discuss Question

147. An A.P. whose first term is unity and in which the sum of first half of any even number of terms to that of second half of the same number of terms is a constant ratio, then the common difference is :

A 2
B 1
C 3
D None of these
Answer :   2
Discuss Question

148. The sum of an infinite geometric series is 2 and the sum of the geometric series made from the cubes of this infinite sereis is 24. Then the series is

A $$3 + \frac{3}{2} - \frac{3}{4} + \frac{3}{8} - .....$$
B $$3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + .....$$
C $$3 - \frac{3}{2} + \frac{3}{4} - \frac{3}{8} + .....$$
D None of these
Answer :   $$3 - \frac{3}{2} + \frac{3}{4} - \frac{3}{8} + .....$$
Discuss Question

149. If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A $$xyz$$
B 0
C 1
D None of these
Answer :   1
Discuss Question

150. $$ABC$$  is a right-angled triangle in which $$\angle B = {90^ \circ }$$  and $$BC = a.$$  If $$n$$ points $${L_1},{L_2},.....,{L_n}$$    on $$AB$$  are such that $$AB$$  is divided in $$n + 1$$  equal parts and $${L_1}{M_1},{L_2}{M_2},.....,{L_n}{M_n}$$      are line segments parallel to $$BC$$  and $${M_1},{M_2},.....,{M_n}$$    are on $$AC$$  then the sum of the lengths of $${L_1}{M_1},{L_2}{M_2},.....,{L_n}{M_n}$$      is

A $$\frac{{a\left( {n + 1} \right)}}{2}$$
B $$\frac{{a\left( {n - 1} \right)}}{2}$$
C $$\frac{{an}}{2}$$
D impossible to find from the given data
Answer :   $$\frac{{an}}{2}$$
Discuss Question


Practice More MCQ Question on Maths Section