1. The period of the function $$f\left( x \right) = \left| {\sin \frac{x}{2}} \right| + \left| {\cos \,x} \right|$$     is :

A $$2\pi $$
B $$\pi $$
C $$4\pi $$
D none of these
Answer :   $$2\pi $$
Discuss Question

2. The domain of $$f\left( x \right) = \frac{1}{{\sqrt {\left| {\cos \,x} \right| + \cos \,x} }}$$     is :

A $$\left[ { - 2n\pi ,\,2n\pi } \right]$$
B $$\left( {2n\pi ,\,\overline {2n + 1} \,\pi } \right)$$
C $$\left( {\frac{{\left( {4n + 1} \right)\pi }}{2},\,\frac{{\left( {4n + 3} \right)\pi }}{2}} \right)$$
D $$\left( {\frac{{\left( {4n - 1} \right)\pi }}{2},\,\frac{{\left( {4n + 1} \right)\pi }}{2}} \right)$$
Answer :   $$\left( {\frac{{\left( {4n - 1} \right)\pi }}{2},\,\frac{{\left( {4n + 1} \right)\pi }}{2}} \right)$$
Discuss Question

3. If $$f\left( x \right) = \sin x + \cos x,g\left( x \right) = {x^2} - 1,$$        then $$g\left( {f\left( x \right)} \right)$$  is invertible in the domain

A $$\left[ {0,\frac{\pi }{2}} \right]$$
B $$\left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$$
C $$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$$
D $$\left[ {0,\pi } \right]$$
Answer :   $$\left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$$
Discuss Question

4. If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A $$0 \leqslant x \leqslant 4$$
B $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D None of these
Answer :   $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
Discuss Question

5. For real $$x,$$ let $$f\left( x \right) = {x^3} + 5x + 1,$$     then

A $$f$$ is onto $$R$$ but not one-one
B $$f$$ is one-one and onto $$R$$
C $$f$$ is neither one-one nor onto $$R$$
D $$f$$ is one-one but not onto $$R$$
Answer :   $$f$$ is one-one and onto $$R$$
Discuss Question

6. The domain of the function $$\sqrt {{x^2} - 5x + 6} + \sqrt {2x + 8 - {x^2}} $$       is :

A $$\left[ {2,\,3} \right]$$
B $$\left[ { - 2,\,4} \right]$$
C $$\left[ { - 2,\,2} \right] \cup \left[ {3,\,4} \right]$$
D $$\left[ { - 2,\,1} \right] \cup \left[ {2,\,4} \right]$$
Answer :   $$\left[ { - 2,\,2} \right] \cup \left[ {3,\,4} \right]$$
Discuss Question

7. The domain of the function $$f\left( x \right) = \frac{1}{{\sqrt {\left| x \right| - x} }}$$    is

A $$\left( {0,\infty } \right)$$
B $$\left( { - \infty ,0} \right)$$
C $$\left( { - \infty ,\infty } \right) - \left\{ 0 \right\}$$
D $$\left( { - \infty ,\infty } \right)$$
Answer :   $$\left( { - \infty ,0} \right)$$
Discuss Question

8. If $$f\left( x \right) = {x^n},\,n\, \in \,N$$    and $$\left( {g\,o\,f} \right)\left( x \right) = ng\left( x \right)$$     then $$g\left( x \right)$$  can be :

A $$n\,\left| x \right|$$
B $$3 \cdot \root 3 \of x $$
C $${e^x}$$
D $$\log \,\left| x \right|$$
Answer :   $$\log \,\left| x \right|$$
Discuss Question

9. If $$f\left( x \right) = 4x - {x^2},\,x\, \in \,R,$$     then $$f\left( {a + 1} \right) - f\left( {a - 1} \right)$$     is equal to :

A $$2\left( {4 - a} \right)$$
B $$4\left( {2 - a} \right)$$
C $$4\left( {2 + a} \right)$$
D $$2\left( {4 + a} \right)$$
Answer :   $$4\left( {2 - a} \right)$$
Discuss Question

10. Let $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \geqslant - 1.$$      Then the set $$\left\{ {x:f\left( x \right) = {f^{ - 1}}\left( x \right)} \right\}$$     is

A $$\left\{ {0, - 1,\frac{{ - 3 + i\sqrt 3 }}{2},\frac{{ - 3 - i\sqrt 3 }}{2}} \right\}$$
B $$\left\{ {0,1, - 1} \right\}$$
C $$\left\{ {0, - 1} \right\}$$
D empty
Answer :   $$\left\{ {0, - 1} \right\}$$
Discuss Question


Practice More MCQ Question on Maths Section