61. If $$x = \sum\limits_{n = 0}^\infty {{a^n}} ,y = \sum\limits_{n = 0}^\infty {{b^n}} ,z = \sum\limits_{n = 0}^\infty {{c^n}} $$       where $$a, b, c$$  are in A.P and $$\left| a \right| < 1,\left| b \right| < 1,\left| c \right| < 1$$     then $$x, y, z$$  are in

A G.P.
B A.P.
C H.P.
D None of these
Answer :   H.P.
Discuss Question

62. The third term of a geometric progression is 4. The product of the first five terms is

A $${4^3}$$
B $${4^5}$$
C $${4^4}$$
D none of these
Answer :   $${4^5}$$
Discuss Question

63. If $$\left( {1 + 3 + 5 + ..... + p} \right) + \left( {1 + 3 + 5 + ..... + q} \right) = \left( {1 + 3 + 5 + ..... + r} \right)$$              where each set of parentheses contains the sum of consecutive odd integers as shown, what is the smallest possible value of $$\left( {p + q + r} \right){\text{where }}p > 6?$$

A 12
B 21
C 45
D 54
Answer :   21
Discuss Question

64. The sum of all the proper divisors of 9900 is

A 33851
B 23952
C 23951
D none of these
Answer :   23951
Discuss Question

65. Three consecutive terms of a progression are 30, 24, 20. The next term of the progression is

A $$18$$
B $$17\frac{1}{7}$$
C $$16$$
D none of these
Answer :   $$17\frac{1}{7}$$
Discuss Question

66. If $${a_1},{a_2},{a_3},.....$$   are in A.P. and $$a_1^2 - a_2^2 + a_3^2 - a_4^2 + ..... + a_{2k - 1}^2 - a_{2k}^2 = M\left( {a_1^2 - a_{2k}^2} \right).\,{\text{Then }}M = $$

A $$\frac{{k - 1}}{{k + 1}}$$
B $$\frac{{k }}{{2k - 1}}$$
C $$\frac{{k + 1}}{{2k + 1}}$$
D none
Answer :   $$\frac{{k }}{{2k - 1}}$$
Discuss Question

67. If $$x, y, z$$  are positive then the minimum value of $${x^{\log y - \log z}} + {y^{\log z - \log x}} + {z^{\log x - \log y}}$$       is

A 3
B 1
C 9
D 16
Answer :   3
Discuss Question

68. An infinite G.P. has first term $$‘x’$$ and sum ‘5’, then $$x$$ belongs to

A $$x < - 10$$
B $$ - 10 < x < 0$$
C $$0 < x < 10$$
D $$x > 10$$
Answer :   $$0 < x < 10$$
Discuss Question

69. Let $${a_1},{a_2},{a_3}......$$   be terms on A.P. If $$\frac{{{a_1} + {a_2} + ...... + {a_p}}}{{{a_1} + {a_2} + ...... + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},\,p \ne q,{\text{ then }}\frac{{{a_6}}}{{{a_{21}}}}{\text{ equals}}$$

A $$\frac{{41}}{{11}}$$
B $$\frac{{7}}{{2}}$$
C $$\frac{{2}}{{7}}$$
D $$\frac{{11}}{{41}}$$
Answer :   $$\frac{{11}}{{41}}$$
Discuss Question

70. Let $${T_r}$$ be the $${r^{th}}$$ term of an A.P. whose first term is $$a$$ and common difference is $$d$$. If for some positive integers $$m,n,\,\,m \ne n,\,{T_m} = \frac{1}{n}{\text{ and }}{T_n} = \frac{1}{m},$$       then $$a - d$$  equals

A $$\frac{1}{m} + \frac{1}{n}$$
B $$1$$
C $$\frac{1}{{mn}}$$
D $$0$$
Answer :   $$0$$
Discuss Question


Practice More MCQ Question on Maths Section