61.
If $$x = \sum\limits_{n = 0}^\infty {{a^n}} ,y = \sum\limits_{n = 0}^\infty {{b^n}} ,z = \sum\limits_{n = 0}^\infty {{c^n}} $$ where $$a, b, c$$ are in A.P and $$\left| a \right| < 1,\left| b \right| < 1,\left| c \right| < 1$$ then $$x, y, z$$ are in
A
G.P.
B
A.P.
C
H.P.
D
None of these
Answer :
H.P.
View Solution
Discuss Question
$$\eqalign{
& x = \sum\limits_{n = 0}^\infty {{a^n}} = \frac{1}{{1 - a}};\,\,\,\,a = 1 - \frac{1}{x} \cr
& y = \sum\limits_{n = 0}^\infty {{b^n}} = \frac{1}{{1 - b}};\,\,\,b = 1 - \frac{1}{y} \cr
& z = \sum\limits_{n = 0}^\infty {{c^n}} = \frac{1}{{1 - c}};\,\,\,\,c = 1 - \frac{1}{z} \cr
& a,b,c{\text{ are in A}}{\text{.P}}{\text{. OR }}2b = a + c \cr
& 2\left( {1 - \frac{1}{y}} \right) = 1 - \frac{1}{x} + 1 - \frac{1}{z} \cr
& \frac{2}{y} = \frac{1}{x} + \frac{1}{z} \cr
& \Rightarrow x,y,z{\text{ are in H}}{\text{.P}}{\text{.}} \cr} $$
62.
The third term of a geometric progression is 4. The product of the first five terms is
A
$${4^3}$$
B
$${4^5}$$
C
$${4^4}$$
D
none of these
Answer :
$${4^5}$$
View Solution
Discuss Question
$$\eqalign{
& a{r^2} = 4\,\,.....\left( 1 \right) \cr
& a.ar.a{r^2}.a{r^3}.a{r^4} = {a^5}{r^{10}} \cr
& = {\left( {a{r^2}} \right)^5} = {4^5} \cr} $$
63.
If $$\left( {1 + 3 + 5 + ..... + p} \right) + \left( {1 + 3 + 5 + ..... + q} \right) = \left( {1 + 3 + 5 + ..... + r} \right)$$ where each set of parentheses contains the sum of consecutive odd integers as shown, what is the smallest possible value of $$\left( {p + q + r} \right){\text{where }}p > 6?$$
A
12
B
21
C
45
D
54
Answer :
21
View Solution
Discuss Question
Since $$n^{th}$$ term of A.P. $$ = a + \left( {n - 1} \right)d$$
$$\therefore p = 1 + \left( {n - 1} \right)2$$
( ∵ First term $$= a = 1$$ and common difference $$= d = 2$$ )
$$\eqalign{
& \Rightarrow n = \frac{{p + 1}}{2} \cr
& \therefore \left( {1 + 3 + 5 + ..... + p} \right) + \left( {1 + 3 + 5 + ..... + q} \right) = \left( {1 + 3 + 5 + ..... + r} \right) \cr
& \Rightarrow \frac{{\frac{{p + 1}}{2}}}{2}\left[ {2 \times 1 + \left( {\frac{{p + 1}}{2} - 1} \right)2} \right] + \frac{{\left( {\frac{{q + 1}}{2}} \right)}}{2}\left[ {2 \times 1 + \left( {\frac{{q + 1}}{2} - 1} \right)2} \right] \cr
& = \frac{{r + 1}}{4}\left[ {2 \times 1 + \left( {\frac{{r + 1}}{2} - 1} \right)2} \right] \cr
& \Rightarrow \frac{{p + 1}}{4}\left[ {2 + \left( {p - 1} \right)} \right] + \frac{{q + 1}}{4}\left[ {2 + \left( {q - 1} \right)} \right] \cr
& = \frac{{r + 1}}{4}\left[ {2 + r - 1} \right] \cr
& \Rightarrow {\left( {p + 1} \right)^2} + {\left( {q + 1} \right)^2} = {\left( {r + 1} \right)^2} \cr} $$
This is the possible only when $$p = 7, q = 5, r = 9$$
$$ \therefore p + q + r = 7 + 5 + 9 = 21$$
64.
The sum of all the proper divisors of 9900 is
A
33851
B
23952
C
23951
D
none of these
Answer :
23951
View Solution
Discuss Question
$$9900 = {3^2} \times {2^2} \times {5^2} \times 11$$
∴ sum of all divisors
$$ = \left( {{3^0} + {3^1} + {3^2}} \right)\left( {{2^0} + {2^1} + {2^2}} \right)\left( {{5^0} + {5^1} + {5^2}} \right)\left( {{{11}^0} + {{11}^1}} \right).$$
∴ sum of all proper divisors
$$ = 13 \times 7 \times 31 \times 12 - 1 - 9900$$
$$= 23951.$$
65.
Three consecutive terms of a progression are 30, 24, 20. The next term of the progression is
A
$$18$$
B
$$17\frac{1}{7}$$
C
$$16$$
D
none of these
Answer :
$$17\frac{1}{7}$$
View Solution
Discuss Question
$$\frac{1}{{24}} - \frac{1}{{30}} = \frac{1}{{20}} - \frac{1}{{24}}$$ and so in H.P.
66.
If $${a_1},{a_2},{a_3},.....$$ are in A.P. and $$a_1^2 - a_2^2 + a_3^2 - a_4^2 + ..... + a_{2k - 1}^2 - a_{2k}^2 = M\left( {a_1^2 - a_{2k}^2} \right).\,{\text{Then }}M = $$
A
$$\frac{{k - 1}}{{k + 1}}$$
B
$$\frac{{k }}{{2k - 1}}$$
C
$$\frac{{k + 1}}{{2k + 1}}$$
D
none
Answer :
$$\frac{{k }}{{2k - 1}}$$
View Solution
Discuss Question
We have, $${a_2} - {a_1} = {a_3} - {a_2} = .....\,{a_{2k}} - {a_{2k - 1}} = d$$
Hence,
$$\eqalign{
& a_1^2 - a_2^2 = \left( {{a_1} - {a_2}} \right)\left( {{a_1} + {a_2}} \right) = - d\left( {{a_1} + {a_2}} \right) \cr
& a_3^2 - a_4^2 = \left( {{a_3} - {a_4}} \right)\left( {{a_3} + {a_4}} \right) = - d\left( {{a_3} + {a_4}} \right) \cr
& ......................... \cr
& ......................... \cr
& a_{2k - 1}^2 - a_{2k}^2 = \left( {{a_{2k - 1}} - {a_{2k}}} \right)\left( {{a_{2k - 1}} + {a_{2k}}} \right) = - d\left( {{a_{2k - 1}} + {a_{2k}}} \right) \cr
& {\text{Adding, we get}} \cr
& a_1^2 - a_2^2 + a_3^2 - a_4^2 + ..... + a_{2k - 1}^2 - a_{2k}^2 \cr
& = - d\left( {{a_1} + {a_2} + {a_3} + {a_4} + .....\,{a_{2k - 1}} + {a_{2k}}} \right) \cr
& = - d \cdot \frac{{2k}}{2}\left( {{a_1} + {a_{2k}}} \right) = - dk\left( {{a_1} + {a_{2k}}} \right) \cr
& {\text{But, }}{a_{2k}} = {a_1} + \left( {2k - 1} \right)d \cr
& \Rightarrow - d = \frac{{{a_1} - {a_{2k}}}}{{2k - 1}} \cr
& \therefore {\text{The required sum}} = \frac{k}{{2k - 1}}\left( {a_1^2 - a_{2k}^2} \right) \cr
& \Rightarrow M = \frac{k}{{2k - 1}} \cr} $$
67.
If $$x, y, z$$ are positive then the minimum value of $${x^{\log y - \log z}} + {y^{\log z - \log x}} + {z^{\log x - \log y}}$$ is
A
3
B
1
C
9
D
16
Answer :
3
View Solution
Discuss Question
$$\frac{{{x^{\log y - \log z}} + {y^{\log z - \log x}} + {z^{\log x - \log y}}}}{3} \geqslant \root 3 \of {{x^{\log y - \log z}} \cdot {y^{\log z - \log x}} \cdot {z^{\log x - \log y}}} = 1$$
because $$\log \left\{ {{x^{\log y - \log z}} \cdot {y^{\log z - \log x}} \cdot {z^{\log x - \log y}}} \right\} = 0\left( {{\text{on simplification}}} \right).$$
68.
An infinite G.P. has first term $$‘x’$$ and sum ‘5’, then $$x$$ belongs to
A
$$x < - 10$$
B
$$ - 10 < x < 0$$
C
$$0 < x < 10$$
D
$$x > 10$$
Answer :
$$0 < x < 10$$
View Solution
Discuss Question
$$\eqalign{
& \frac{x}{{1 - r}} = 5 \cr
& \Rightarrow \,r = 1 - \frac{x}{5} \cr
& {\text{Since G}}{\text{.P}}{\text{. contains infinite terms}} \cr
& \therefore \,\,\,\, - 1 < r < 1 \cr
& \Rightarrow \,\, - 1 < 1 - \frac{x}{5} < 1 \cr
& \Rightarrow \,\, - 2 < - \frac{x}{5} < 0 \cr
& \Rightarrow \,\, - 10 < x < 0. \cr
& \Rightarrow \,\,0 < \frac{x}{5} < 2 \cr
& \Rightarrow \,\,0 < x < 10. \cr} $$
69.
Let $${a_1},{a_2},{a_3}......$$ be terms on A.P. If $$\frac{{{a_1} + {a_2} + ...... + {a_p}}}{{{a_1} + {a_2} + ...... + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},\,p \ne q,{\text{ then }}\frac{{{a_6}}}{{{a_{21}}}}{\text{ equals}}$$
A
$$\frac{{41}}{{11}}$$
B
$$\frac{{7}}{{2}}$$
C
$$\frac{{2}}{{7}}$$
D
$$\frac{{11}}{{41}}$$
Answer :
$$\frac{{11}}{{41}}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{\frac{p}{2}\left[ {2{a_1} + \left( {p - 1} \right)d} \right]}}{{\frac{q}{2}\left[ {2{a_1} + \left( {q - 1} \right)d} \right]}} = \frac{{{p^2}}}{{{q^2}}} \cr
& \Rightarrow \,\,\frac{{2{a_1} + \left( {p - 1} \right)d}}{{2{a_1} + \left( {q - 1} \right)d}} = \frac{p}{q} \cr
& \frac{{{a_1} + \left( {\frac{{p - 1}}{2}} \right)d}}{{{a_1} + \left( {\frac{{q - 1}}{2}} \right)d}} = \frac{p}{q} \cr
& {\text{For }}\frac{{{a_6}}}{{{a_{21}}}},\,\,p = 11,\,\,q = 41 \cr
& \Rightarrow \,\,\frac{{{a_6}}}{{{a_{21}}}} = \frac{{11}}{{41}} \cr} $$
70.
Let $${T_r}$$ be the $${r^{th}}$$ term of an A.P. whose first term is $$a$$ and common difference is $$d$$. If for some positive integers $$m,n,\,\,m \ne n,\,{T_m} = \frac{1}{n}{\text{ and }}{T_n} = \frac{1}{m},$$ then $$a - d$$ equals
A
$$\frac{1}{m} + \frac{1}{n}$$
B
$$1$$
C
$$\frac{1}{{mn}}$$
D
$$0$$
Answer :
$$0$$
View Solution
Discuss Question
$$\eqalign{
& {T_m} = a + \left( {m - 1} \right)d = \frac{1}{n}\,\,\,......\left( 1 \right) \cr
& {T_n} = a + \left( {n - 1} \right)d = \frac{1}{m}\,\,\,......\left( 2 \right) \cr
& \left( 1 \right) - \left( 2 \right)\,\, \Rightarrow \left( {m - n} \right)d = \frac{1}{n} - \frac{1}{m} \cr
& \Rightarrow \,d = \frac{1}{{mn}} \cr
& {\text{From }}\left( 1 \right)\,\,a = \frac{1}{{mn}} \cr
& \Rightarrow \,a - d = 0 \cr} $$