121.
If 1, $${\log _9}\left( {{3^{1 - x}} + 2} \right),{\log_3} \left( {{{4.3}^x} - 1} \right)$$ are in A.P. then $$x$$ equals
A
$${\log _3}4$$
B
$$1 - {\log _3}4$$
C
$$1 - {\log _4}3$$
D
$${\log _4}3$$
Answer :
$$1 - {\log _3}4$$
View Solution
Discuss Question
$$\eqalign{
& 1,{\log _9}\left( {{3^{1 - x}} + 2} \right),{\log_3} \left( {{{4.3}^x} - 1} \right){\text{ are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,{\text{2lo}}{{\text{g}}_9}\left( {{3^{1 - x}} + 2} \right) = 1 + {\log _3}\left( {{{4.3}^x} - 1} \right) \cr
& \Rightarrow \,\,{\log _3}\left( {{3^{1 - x}} + 2} \right) = {\log _3}3 + {\log _3}\left( {{{4.3}^x} - 1} \right) \cr
& \Rightarrow \,\,{\log _3}\left( {{3^{1 - x}} + 2} \right) = {\log _3}\left[ {3\left( {{{4.3}^x} - 1} \right)} \right] \cr
& \Rightarrow \,\,{3^{1 - x}} + 2 = 3\left( {{{4.3}^x} - 1} \right) \cr
& \Rightarrow \,\,{3.3^{ - x}} + 2 = {12.3^x} - 3. \cr
& {\text{Put }}{{\text{3}}^x} = t \cr
& \Rightarrow \,\,\frac{3}{t} + 2 = 12t - 3{\text{ or 12}}{t^2} - 5t - 3 = 0; \cr
& {\text{Hence }}t = - \frac{1}{3},\frac{3}{4} \cr
& \Rightarrow \,\,{3^x} = \frac{3}{4}\left( {{\text{as }}{{\text{3}}^x} \ne - ve} \right) \cr
& \Rightarrow \,\,x = {\log _3}\left( {\frac{3}{4}} \right){\text{ or }}x = {\log _3}3 - {\log _3}4 \cr
& \Rightarrow \,\,x = 1 - {\log _3}4 \cr} $$
122.
If $$a, b, c$$ are the sides of a triangle, then the minimum value of $$\frac{a}{{b + c - a}} + \frac{b}{{c + a - b}} + \frac{c}{{a + b - c}}$$ is equal to
A
3
B
6
C
9
D
12
Answer :
3
View Solution
Discuss Question
Given expression is $$\frac{1}{2}\sum {\frac{{2a}}{{b + c - a}}} $$
$$\eqalign{
& = \frac{1}{2}\sum {\left( {\frac{{2a}}{{b + c - a}} + 1} \right) - \frac{3}{2}} \cr
& = \frac{1}{2}\left( {a + b + c} \right)\sum {\frac{1}{{b + c - a}} - \frac{3}{2}} \cr
& {\text{Now, as }}\left( {a + b + c} \right) = \sum {\left( {b + c - a} \right)} \cr} $$
Applying A.M. $$ \geqslant $$ H.M.
Minimum value of the expression $$ = \frac{1}{2} \times 9 - \frac{3}{2} = 3.$$
123.
If the angles $$A < B < C$$ of a triangle are in A. P., then
A
$${c^2} = {a^2} + {b^2} - ab$$
B
$${b^2} = {a^2} + {c^2} - ac$$
C
$${c^2} = {a^2} + {b^2} $$
D
None of these
Answer :
$${b^2} = {a^2} + {c^2} - ac$$
View Solution
Discuss Question
$$\eqalign{
& A + C = 2B{\text{ and }}A + B + C = {180^ \circ }{\text{ so, }}B = {60^ \circ } \cr
& \therefore \cos {60^ \circ } = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} \cr
& \Rightarrow {b^2} = {a^2} + {c^2} - ac \cr} $$
124.
If the sum of the first ten terms of the series $${\left( {1\frac{3}{5}} \right)^2} + {\left( {2\frac{2}{5}} \right)^2} + {\left( {3\frac{1}{5}} \right)^2} + {4^2} + {\left( {4\frac{4}{5}} \right)^2} + .....,$$ is $${\frac{16}{5} m}$$ then $$m$$ is equal to :
A
100
B
99
C
102
D
101
Answer :
101
View Solution
Discuss Question
$$\eqalign{
& {\left( {\frac{8}{5}} \right)^2} + {\left( {\frac{{12}}{5}} \right)^2} + {\left( {\frac{{16}}{5}} \right)^2} + {\left( {\frac{{20}}{5}} \right)^2}..... + {\left( {\frac{{44}}{5}} \right)^2} \cr
& S = \frac{{16}}{{25}}\left( {{2^2} + {3^2} + {4^2} + ..... + {{11}^2}} \right) \cr
& = \frac{{16}}{{25}}\left( {\frac{{11\left( {11 + 1} \right)\left( {22 + 1} \right)}}{6} - 1} \right) \cr
& = \frac{{16}}{{25}} \times 505 = \frac{{16}}{5} \times 101 \cr
& \Rightarrow \frac{{16}}{5}m = \frac{{16}}{5} \times 101 \cr
& \Rightarrow m = 101. \cr} $$
125.
If the first two terms of an H.P. be $$\frac{2}{5}$$ and $$\frac{12}{23}$$ then the largest positive term of the progression is the
A
$${6^{th}}$$ term
B
$${7^{th}}$$ term
C
$${5^{th}}$$ term
D
$${8^{th}}$$ term
Answer :
$${6^{th}}$$ term
View Solution
Discuss Question
Let $$a,\,b$$ be the first terms of an A.P.
Then first two terms of H.P. is
$$\eqalign{
& \frac{1}{a} = \frac{2}{5} \Rightarrow a = \frac{5}{2}{\text{ and }}\frac{1}{b} = \frac{{12}}{{23}} \Rightarrow b = \frac{{23}}{{12}} \cr
& \therefore \,{\text{common difference }}d = b - a \cr
& = \frac{{23}}{{12}} - \frac{5}{2} \cr
& = \frac{{23 - 30}}{{12}} \cr
& = \frac{{ - 7}}{{12}} \cr} $$
Let $${n^{th}}$$ term be the smallest positive term of the A.P.
$$\eqalign{
& \therefore \,{a_n} \geqslant 0 \cr
& \Rightarrow a + \left( {n - 1} \right)d \geqslant 0 \cr
& \Rightarrow \frac{5}{2} + \left( {n - 1} \right)\left( {\frac{{ - 7}}{{12}}} \right) \geqslant 0 \cr
& \Rightarrow 30 - 7\left( {n - 1} \right) \geqslant 0 \cr
& \Rightarrow 30 - 7n + 7 \geqslant 0 \cr
& \Rightarrow - 7n + 37 \geqslant 0 \cr
& \Rightarrow - 7n \geqslant - 37 \cr
& \Rightarrow 7n \leqslant 37 \cr
& \Rightarrow n \leqslant \frac{{37}}{7} \cr
& \Rightarrow n \leqslant 5.3\,\,\left( {{\text{approx}}{\text{.}}} \right) \cr} $$
$$\therefore \,n = 5$$ since $$n$$ is a natural number
$$\eqalign{
& \therefore \,{a_n} = {a_5} \cr
& = a + \left( {5 - 1} \right)d \cr
& = \frac{5}{2} + 4 \cdot \left( {\frac{{ - 7}}{{12}}} \right) \cr
& = \frac{5}{2} - \frac{7}{3} \cr
& = \frac{{15 - 14}}{6} \cr
& = \frac{1}{6} \cr} $$
$$\therefore $$ Value of largest term of H.P.
$$\eqalign{
& {\text{ = }}\frac{1}{{{a_5}}} \cr
& {\text{ = }}\frac{1}{{\frac{1}{6}}} \cr
& = 6 \cr} $$
126.
If $$\ln \left( {a + c} \right),\ln \left( {a - c} \right),\ln \left( {a - 2b + c} \right)$$ are in A.P., then
A
$$a, b, c$$ are in A.P.
B
$${a^2},{b^2},{c^2}$$ are in A.P.
C
$$a, b, c$$ are in G.P.
D
$$a, b, c$$ are in H.P.
Answer :
$$a, b, c$$ are in H.P.
View Solution
Discuss Question
$$\eqalign{
& \ln \left( {a + c} \right),\ln \left( {a - c} \right),\ln \left( {a - 2b + c} \right){\text{ are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,a + c,a - c,a - 2b + c{\text{ are in G}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,{\left( {c - a} \right)^2} = \left( {a + c} \right)\left( {a - 2b + c} \right) \cr
& \Rightarrow {\left( {c - a} \right)^2} = {\left( {a + c} \right)^2} - 2b\left( {a + c} \right) \cr
& \Rightarrow \,2b\left( {a + c} \right) = {\left( {a + c} \right)^2} - {\left( {c - a} \right)^2} \cr
& \Rightarrow 2b\left( {a + c} \right) = 4ac \cr
& \Rightarrow \,b = \frac{{2ac}}{{a + c}} \cr
& \Rightarrow \,a,b,c{\text{ are in H}}{\text{.P}}{\text{.}} \cr} $$
127.
The value of $${2^{\frac{1}{4}}}{.4^{\frac{1}{8}}}{.8^{\frac{1}{{16}}}}.....\,\infty $$ is
A
$$1$$
B
$$2$$
C
$$\frac{3}{2}$$
D
$$4$$
Answer :
$$2$$
View Solution
Discuss Question
$$\eqalign{
& {\text{The product is }}P = {2^{\frac{1}{4}}}{.2^{\frac{2}{8}}}{.2^{\frac{3}{{16}}}}...... \cr
& = {2^{\frac{1}{4} + \frac{2}{8} + \frac{3}{{16}} + ......\,\,\infty }} \cr
& {\text{Now let }}S = \frac{1}{4} + \frac{2}{8} + \frac{3}{{16}} + ......\,\infty \,\,\,\,\,\,......\left( 1 \right) \cr
& \frac{1}{2}S = \frac{1}{8} + \frac{2}{{16}} + ......\,\infty \,\,\,\,\,\,\,\,......\left( 2 \right) \cr
& {\text{Subtracting }}\left( 2 \right){\text{ from }}\left( 1 \right) \cr
& \Rightarrow \,\,\frac{1}{2}S = \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + ......\,\infty \cr
& {\text{or }}\frac{1}{2}S = \frac{{\frac{1}{4}}}{{1 - \frac{1}{2}}} = \frac{1}{2} \cr
& \Rightarrow \,\,S = 1 \cr
& \therefore \,\,P = {2^S} = 2 \cr} $$
128.
If $$\left( {1 + x} \right)\left( {1 + {x^2}} \right)\left( {1 + {x^4}} \right).....\left( {1 + {x^{128}}} \right) = \sum\limits_{r = 0}^n {{x^r}} $$ then $$n$$ is
A
255
B
127
C
63
D
none of these
Answer :
255
View Solution
Discuss Question
$$n$$ = index of the highest power of $$x = 1 + 2 + 4 + . . . . . + 128.$$
129.
If $${a_1},{a_2},.....,{a_n}$$ are in H.P., then the expression $${a_1}{a_2} + {a_2}{a_3} + ..... + {a_{n - 1}}{a_n}$$ is equals to
A
$$n\left( {{a_1} - {a_n}} \right)$$
B
$$\left( {n - 1} \right)\left( {{a_1} - {a_n}} \right)$$
C
$$n{a_1}{a_n}$$
D
$$\left( {n - 1} \right){a_1}{a_n}$$
Answer :
$$\left( {n - 1} \right){a_1}{a_n}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{1}{{{a_2}}} - \frac{1}{{{a_1}}} = \frac{1}{{{a_3}}} - \frac{1}{{{a_2}}} = ...... = \frac{1}{{{a_n}}} - \frac{1}{{{a_{n - 1}}}} = d\,\,\,\left( {{\text{say}}} \right) \cr
& {\text{Then }}{a_1}{a_2} = \frac{{{a_1} - {a_2}}}{d},\,{a_2}{a_3} = \frac{{{a_2} - {a_3}}}{d},......,{a_{n - 1}}{a_n} = \frac{{{a_{n - 1}} - {a_n}}}{d} \cr
& \therefore \,\,{a_1}{a_2} + {a_2}{a_3} + ...... + {a_{n - 1}}{a_n} \cr
& = \frac{{{a_1} - {a_2}}}{d} + \frac{{{a_2} - {a_3}}}{d} + ...... + \frac{{{a_{n - 1}}{a_n}}}{d} \cr
& = \frac{1}{d}\left[ {{a_1} - {a_2} + {a_2} - {a_3} + ...... + {a_{n - 1}}{a_n}} \right] = \frac{{{a_1} - {a_n}}}{d} \cr
& {\text{Also, }}\frac{1}{{{a_n}}} = \frac{1}{{{a_1}}} + \left( {n - 1} \right)d \cr
& \Rightarrow \,\,\frac{{{a_1} - {a_n}}}{{{a_1}{a_n}}} = \left( {n - 1} \right)d \cr
& \Rightarrow \,\,\frac{{{a_1} - {a_n}}}{d} = \left( {n - 1} \right){a_1}{a_n} \cr
& {\text{Which is the required result}}{\text{.}} \cr} $$
130.
Which one of the following options is correct ?
A
$${\sin ^2}{30^ \circ },{\sin ^2}{45^ \circ },{\sin ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
B
$${\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
C
$${\cot ^2}{30^ \circ },{\cot ^2}{45^ \circ },{\cot ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
D
$${\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
Answer :
$${\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
View Solution
Discuss Question
Three numbers $$a, b$$ and $$c$$ will be in G.P. if $$b^2 = ac.$$ Only option $$(D)$$ i.e. $${\tan ^2}{30^ \circ },{\tan^2}{45^ \circ }{\text{and}}\,{\tan^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
$$\eqalign{
& \because {\text{ta}}{{\text{n}}^2}{30^ \circ } = \frac{1}{3} \cr
& {\tan ^2}{45^ \circ } = 1 \cr
& {\text{and }}{\tan ^2}{60^ \circ } = 3 \cr
& \therefore {\tan ^2}{30^ \circ },{\tan^2}{45^ \circ }{\text{and}}\,{\tan^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}} \cr} $$