1. If $$\frac{{\left( {n + 2} \right)!}}{{6\left( {n - 1} \right)!}}$$   divisible by $$n,n \in N\,$$  and $$1 \leqslant n \leqslant 9,$$   then $$n$$ is

A 4
B 2
C 6
D 1
Answer :   1
Discuss Question

2. If \[A = \left[ {\begin{array}{*{20}{c}} 1&0\\ 1&1 \end{array}} \right]{\rm{and }}\,\,I = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right],\]      then which one of the following holds for all $$n \geqslant 1,$$  by the principle of mathematical induction

A $${A^n} = nA - \left( {n - 1} \right)I$$
B $${A^n} = {2^{n - 1}}A - \left( {n - 1} \right)I$$
C $${A^n} = nA + \left( {n - 1} \right)I$$
D $${A^n} = {2^{n - 1}}A + \left( {n - 1} \right)I$$
Answer :   $${A^n} = nA - \left( {n - 1} \right)I$$
Discuss Question

3. The inequality $$n! > 2^{n - 1}$$   is true for

A $$n > 2$$
B $$n \in N$$
C $$n > 3$$
D None of these
Answer :   $$n > 2$$
Discuss Question

4. If $$P = n\left( {{n^2} - {1^2}} \right)\left( {{n^2} - {2^2}} \right)\left( {{n^2} - {3^2}} \right).....\left( {{n^2} - {r^2}} \right),n > r,n \in N$$             then $$P$$ is necessarily divisible by

A $$\left( {2r + 2} \right)!$$
B $$\left( {2r + 4} \right)!$$
C $$\left( {2r + 1} \right)!$$
D None of these
Answer :   $$\left( {2r + 1} \right)!$$
Discuss Question

5. $${10^n} + 3\left( {{4^{n + 2}}} \right) + 5$$    is divisible by $$\left( {n \in N} \right)$$

A 7
B 5
C 9
D 17
Answer :   9
Discuss Question

6. A student was asked to prove a statement $$P\left( n \right)$$  by induction. He proved that $$P\left( {k + 1} \right)$$   is true whenever $$P\left( 5 \right)$$  is true for all $$k > 5 \in N$$   and also that $$P\left( 5 \right)$$  is true. On the basis of this he could conclude that $$P\left( n \right)$$  is true

A for all $$n \in N$$
B for all $$n > 5$$
C for all $$n \geqslant 5$$
D for all $$n < 5$$
Answer :   for all $$n \geqslant 5$$
Discuss Question

7. If $$P\left( n \right):$$  "$$46^n + 19^n + k$$    is divisible by 64 for $$n \in N$$  " is true, then the least negative integral value of $$k$$ is

A $$ - 1$$
B $$1$$
C $$2$$
D $$ - 2$$
Answer :   $$ - 1$$
Discuss Question

8. If $$\frac{1}{{2 \times 4}} + \frac{1}{{4 \times 6}} + \frac{1}{{6 \times 8}} + .....\,n{\text{ terms}} = \frac{{kn}}{{n + 1}},$$          then $$k$$ is equal to

A $$\frac{1}{4}$$
B $$\frac{1}{2}$$
C $$1$$
D $$\frac{1}{8}$$
Answer :   $$\frac{1}{4}$$
Discuss Question

9. Using mathematical induction, the numbers $${a_n} 's$$ are defined $${a_0} = 1,{a_{n + 1}} = 3{n^2} + n + {a_n},\left( {n \geqslant 0} \right).$$       Then, $$a_n$$ is equal to

A $${n^3} + {n^2} + 1$$
B $${n^3} - {n^2} + 1$$
C $${n^3} - {n^2} $$
D $${n^3} + {n^2}$$
Answer :   $${n^3} - {n^2} + 1$$
Discuss Question

10. If $$n$$ is a natural number, then

A $${1^2} + {2^2} + ..... + {n^2} < \frac{{{n^3}}}{3}$$
B $${1^2} + {2^2} + ..... + {n^2} = \frac{{{n^3}}}{3}$$
C $${1^2} + {2^2} + ..... + {n^2} > {n^3}$$
D $${1^2} + {2^2} + ..... + {n^2} > \frac{{{n^3}}}{3}$$
Answer :   $${1^2} + {2^2} + ..... + {n^2} > \frac{{{n^3}}}{3}$$
Discuss Question


Practice More MCQ Question on Maths Section