1. The area bounded by $$f\left( x \right) = {x^2},\,0 \leqslant x \leqslant 1,\,g\left( x \right) = - x + 2,\,1 \leqslant x \leqslant 2$$          and $$x$$-axis is :

A $$\frac{3}{2}$$
B $$\frac{4}{3}$$
C $$\frac{8}{3}$$
D None of these
Answer :   None of these
Discuss Question

2. $$\int_0^{2\pi } {\frac{{x{{\sin }^{2n}}x}}{{{{\sin }^{2n}}x + {{\cos }^{2n}}x}}dx,\,n > 0} $$       is equal to :

A $$\pi $$
B $$2\pi $$
C $${\pi ^2}$$
D $$\frac{1}{2}{\pi ^2}$$
Answer :   $${\pi ^2}$$
Discuss Question

3. Let $$I = \int_{ - a}^a {\left( {p{{\tan }^3}x + q{{\cos }^2}x + r\sin \,x} \right)dx,} $$        where $$p,\,q,\,r$$   are arbitrary constants. The numerical value of $$I$$ depends on :

A $$p,\,q,\,r,\,a$$
B $$q,\,r,\,a$$
C $$q,\,a$$
D $$p,\,r,\,a$$
Answer :   $$q,\,a$$
Discuss Question

4. Let $$f\left( x \right)$$  be a given integrable function such that $$f\left( {x + k} \right) = f\left( x \right)$$    for all $$x\, \in \,R.$$   Then $$\int_a^{a + k} {f\left( x \right)dx} $$    depends for its value on :

A $$a$$ only
B $$k$$ only
C both $$a$$ and $$k$$
D neither $$a$$ nor $$k$$
Answer :   $$k$$ only
Discuss Question

5. The area of the region bounded by the curves $$y = \left| {x - 2} \right|,\,x = 1,\,x = 3$$      and the x-axis is-

A $$4$$
B $$2$$
C $$3$$
D $$1$$
Answer :   $$1$$
Discuss Question

6. The area of the plane region bounded by the curves $$x + 2{y^2} = 0$$   and $$x + 3{y^2} = 1$$   is equal to-

A $$\frac{5}{3}$$
B $$\frac{1}{3}$$
C $$\frac{2}{3}$$
D $$\frac{4}{3}$$
Answer :   $$\frac{4}{3}$$
Discuss Question

7. The value of $$\int_{ - 2}^2 {\frac{{{{\sin }^2}x}}{{\left[ {\frac{x}{\pi }} \right] + \frac{1}{2}}}dx,} $$    where $$\left[ x \right] = $$  the greatest integer greater than or equal to $$x,$$ is :

A 1
B 0
C $$4 - \sin \,4$$
D none of these
Answer :   0
Discuss Question

8. The area of the portion enclosed by the curve $$\sqrt x + \sqrt y = \sqrt a $$    and the axes of reference is :

A $$\frac{{{a^2}}}{6}$$
B $${{a^2}}$$
C $$\frac{{{a^2}}}{2}$$
D $$\frac{{{a^2}}}{4}$$
Answer :   $$\frac{{{a^2}}}{6}$$
Discuss Question

9. Let $${I_1} = \int_0^1 {{e^{ - {x^2}}}} dx,\,{I_2} = \int_0^1 {{e^{ - x}}} {\cos ^2}x\,dx$$        and $${I_3} = \int_0^1 {{e^{ - {x^2}}}{{\cos }^2}x\,} dx.$$     Then :

A $${I_1} < {I_2} < {I_3}$$
B $${I_3} < {I_2} < {I_1}$$
C $${I_2} < {I_1} < {I_3}$$
D $${I_2} < {I_3} < {I_1}$$
Answer :   $${I_2} < {I_3} < {I_1}$$
Discuss Question

10. The area (in sq. units) of the region $$A = \left\{ {\left( {x,\,y} \right):{x^2} \leqslant y \leqslant x + 2} \right\}$$      is :

A $$\frac{{10}}{3}$$
B $$\frac{{9}}{2}$$
C $$\frac{{31}}{6}$$
D $$\frac{{13}}{6}$$
Answer :   $$\frac{{9}}{2}$$
Discuss Question


Practice More MCQ Question on Maths Section