31. The sum of $$\frac{3}{{1 \cdot 2}} \cdot \frac{1}{2} + \frac{4}{{2 \cdot 3}} \cdot {\left( {\frac{1}{2}} \right)^2} + \frac{5}{{3 \cdot 4}} \cdot {\left( {\frac{1}{2}} \right)^3} + ......\,{\text{to }}n$$           terms is equal to

A $$1 - \frac{1}{{\left( {n + 1} \right){2^n}}}$$
B $$1 - \frac{1}{{n \cdot {2^{n - 1}}}}$$
C $$1 + \frac{1}{{\left( {n + 1} \right){2^n}}}$$
D None of these
Answer :   $$1 - \frac{1}{{\left( {n + 1} \right){2^n}}}$$
Discuss Question

32. The sum of the first $$n$$ terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + ....{\text{ is }}\frac{{n{{\left( {n + 1} \right)}^2}}}{2}$$           when $$n$$ is even. When $$n$$ is odd the sum is

A $${\left[ {\frac{{n\left( {n + 1} \right)}}{2}} \right]^2}$$
B $$\frac{{{n^2}\left( {n + 1} \right)}}{2}$$
C $$\frac{{n{{\left( {n + 1} \right)}^2}}}{4}$$
D $$\frac{{3n\left( {n + 1} \right)}}{2}$$
Answer :   $$\frac{{{n^2}\left( {n + 1} \right)}}{2}$$
Discuss Question

33. If $$\left( {2n + r} \right)r,n \in N,r \in N$$     is expressed as the sum of $$k$$ consecutive odd natural numbers then $$k$$ is equal to

A $$r$$
B $$n$$
C $$r + 1$$
D $$n + 1$$
Answer :   $$r$$
Discuss Question

34. If $${\log _{10}}2,{\log _{10}}\left( {{2^x} - 1} \right)$$    and $${\log _{10}}\left( {{2^x} + 3} \right)$$   are three consecutive terms of an A.P, then the value of $$x$$ is

A $$1$$
B $${\log _{5}}2$$
C $${\log _{2}}5$$
D $${\log _{10}}5$$
Answer :   $${\log _{2}}5$$
Discuss Question

35. If $$a, b, c, d$$   and $$p$$ are distinct real numbers such that $$\left( {{a^2} + {b^2} + {c^2}} \right){p^2} - 2\left( {ab + bc + cd} \right)p + \left( {{b^2} + {c^2} + {d^2}} \right) \leqslant 0$$            then $$a, b, c, d$$   are in

A A.P.
B G.P.
C H.P.
D None of these
Answer :   G.P.
Discuss Question

36. $$ABCD$$  is a square of length $$a,a \in N,a > 1.$$   Let $${L_1},{L_2},{L_3},.....$$    be points on $$BC$$  such that $$B{L_1} = {L_1}{L_2} = {L_2}{L_3} = ..... = 1$$       and $${M_1},{M_2},{M_3},.....$$    be point on $$CD$$  such that $$C{M_1} = {M_1}{M_2} = {M_2}{M_3} = ..... = 1.$$       Then $$\sum\limits_{n = 1}^{a - 1} {\left( {AL_n^2 + {L_n}M_n^2} \right)} $$    is equal to

A $$\frac{1}{2}a{\left( {a - 1} \right)^2}$$
B $$\frac{1}{2}a\left( {a - 1} \right)\left( {4a - 1} \right)$$
C $$\frac{1}{2}\left( {a - 1} \right)\left( {2a - 1} \right)\left( {4a - 1} \right)$$
D None of these
Answer :   $$\frac{1}{2}a\left( {a - 1} \right)\left( {4a - 1} \right)$$
Discuss Question

37. Fifth term of a G.P. is 2, then the product of its 9 terms is

A 256
B 512
C 1024
D none of these
Answer :   512
Discuss Question

38. If $$a, b$$  and $$c$$ are in A.P., and $$p$$ and $$p'$$ are, respectively, A.M. and G.M. between $$a$$ and $$b$$ while $$q, q'$$  are, respectively, the A,M. and G. M. between $$b$$ and $$c$$ then

A $${p^2} + {q^2} = p{'^2} + q{'^2}$$
B $$pq = p'q'$$
C $${p^2} - {q^2} = p{'^2} - q{'^2}$$
D None of these
Answer :   $${p^2} - {q^2} = p{'^2} - q{'^2}$$
Discuss Question

39. If $$x, y, z$$  are three real numbers of the same sign then the value of $$\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$   lies in the interval

A $$\left[ {2, + \infty } \right)$$
B $$\left[ {3, + \infty } \right)$$
C $$\left( {3, + \infty } \right)$$
D $$\left( { - \infty ,3} \right)$$
Answer :   $$\left[ {3, + \infty } \right)$$
Discuss Question

40. If $$0 < x < \frac{\pi }{2}$$  then the minimum value of $${\left( {\sin x + \cos x + {\text{cosec}}\,2x} \right)^3}$$     is

A 27
B 13.5
C 6.75
D none of these
Answer :   13.5
Discuss Question


Practice More MCQ Question on Maths Section