21.
The sum of an infinite G.P. is $$x$$ and the common ratio $$r$$ is such that $$\left| r \right| < 1.$$ If the first term of the G.P. is 2, then which one of the following is correct ?
A
$$ - 1 < x < 1$$
B
$$ - \infty < x < 1$$
C
$$ 1 < x < \infty$$
D
None of these
Answer :
$$ 1 < x < \infty$$
View Solution
Discuss Question
$${\text{G}}{\text{.P}}{\text{.}} = x$$
$$\frac{a}{{1 - r}} = x$$ ( where, $$a = {1^{st}}$$ term and $$r$$ = common ratio )
$$\eqalign{
& \Rightarrow \frac{2}{{1 - r}}x\,\,\,.....\left( {\text{i}} \right)\,\,\left( {\because {\text{Given }}a = 2{\text{ and }}\left| r \right| < 1} \right) \cr
& \Rightarrow - 1 < r < 1 \cr
& \Rightarrow 1 > - r < - 1 \cr
& \Rightarrow 1 + 1 > 1 - r > 1 - 1 \cr
& \Rightarrow 0 < 1 - r < 2 \cr
& \Rightarrow \frac{1}{{1 - r}} > \frac{1}{2},\frac{2}{{1 - r}} > 1 \cr} $$
from equation (i) $$x > 1$$
Hence, $$1 < x < \infty .$$
22.
Sum of the first $$n$$ terms of the series $$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ......$$ is equal to
A
$${2^n} - n - 1$$
B
$$1 - {2^{ - n}}$$
C
$$n + {2^{ - n}} - 1$$
D
$${2^n} + 1$$
Answer :
$$n + {2^{ - n}} - 1$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let }}S = \frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ......n{\text{ terms}} \cr
& {\text{ = }}\left( {1 - \frac{1}{2}} \right) + \left( {1 - \frac{1}{4}} \right) + \left( {1 - \frac{1}{8}} \right) + \left( {1 - \frac{1}{{16}}} \right).....n\,{\text{terms}} \cr
& {\text{ = }}\left( {1 + 1 + 1 + .....n{\text{ terms}}} \right) - \left( {\frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{2^4}}} + .... + \frac{1}{{{2^n}}}} \right) \cr
& = n - \left[ {\frac{{\frac{1}{2}\left( {1 - \frac{1}{{{2^n}}}} \right)}}{{1 - \frac{1}{2}}}} \right] \cr
& = n - 1 + {2^{ - n}} \cr} $$
23.
Let there be a GP whose first term is $$a$$ and the common ratio is $$r.$$ If $$A$$ and $$H$$ are the arithmetic mean and the harmonic mean respectively for the
first $$n$$ terms of the GP, $$A \cdot H$$ is equal to
A
$${a^2}{r^{n - 1}}$$
B
$${a}{r^n}$$
C
$${a^2}{r^n}$$
D
none of these
Answer :
$${a^2}{r^{n - 1}}$$
View Solution
Discuss Question
$$\eqalign{
& A = \frac{{a + ar + a{r^2} + ..... + a{r^{n - 1}}}}{n} = \frac{{a\left( {1 - {r^n}} \right)}}{{n\left( {1 - r} \right)}}; \cr
& H = \frac{1}{{\frac{{\frac{1}{a} + \frac{1}{{ar}} + ..... + \frac{1}{{a{r^{n - 1}}}}}}{n}}} = \frac{{n\left( {r - 1} \right){r^n}}}{{\frac{r}{a}\left( {{r^n} - 1} \right)}}. \cr} $$
24.
If $$\left| x \right| < \frac{1}{2},$$ what is the value of $$1 + n\left[ {\frac{x}{{1 - x}}} \right] + \left[ {\frac{{n\left( {n + 1} \right)}}{{2\,!}}} \right]{\left[ {\frac{x}{{1 - x}}} \right]^2} + .....\,\infty \,?$$
A
$${\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$
B
$${\left( {1 - x} \right)^n}$$
C
$${\left[ {\frac{{1 - 2x}}{{1 - x}}} \right]^n}$$
D
$${\left( {\frac{1}{{1 - x}}} \right)^n}$$
Answer :
$${\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$
View Solution
Discuss Question
Given that $$1 + n\left[ {\frac{x}{{1 - x}}} \right] + \left[ {\frac{{n\left( {n + 1} \right)}}{{2\,!}}} \right]{\left[ {\frac{x}{{1 - x}}} \right]^2} + .....\,\infty\,\, $$ is expansion of $${\left[ {1 - \frac{x}{{1 - x}}} \right]^{ - n}}.$$
So, it is $$ = {\left[ {1 - \frac{x}{{1 - x}}} \right]^{ - n}}$$
$$ = {\left[ {\frac{{1 - x - x}}{{1 - x}}} \right]^{ - n}} = {\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$
25.
A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after
A
19 months
B
20 months
C
21 months
D
18 months
Answer :
21 months
View Solution
Discuss Question
Let required number of months = $$n$$
$$\eqalign{
& \therefore \,\,200 \times 3 + \left( {240 + 280 + 320 + ..... + {{\left( {n - 3} \right)}^{th}}{\text{term}}} \right) = 11040 \cr
& \Rightarrow \,\,\frac{{n - 3}}{2}\left[ {2 \times 240 + \left( {n - 4} \right) \times 40} \right] = 11040 - 600 \cr
& \Rightarrow \,\,\left( {n - 3} \right)\left[ {240 + 20n - 80} \right] = 10440 \cr
& \Rightarrow \,\,\left( {n - 3} \right)\left( {20n + 160} \right) = 10440 \cr
& \Rightarrow \,\,\left( {n - 3} \right)\left( {n + 8} \right) = 522 \cr
& \Rightarrow \,\,{n^2} + 5n - 546 = 0 \cr
& \Rightarrow \,\,\left( {n + 26} \right)\left( {n - 21} \right) = 0 \cr
& \therefore \,\,n = 21 \cr} $$
26.
$$2 + 4 + 7 + 11 + 16 + . . . . .\,$$ to $$n$$ terms =
A
$$\frac{1}{6}\left( {{n^2} + 3n + 8} \right)$$
B
$$\frac{n}{6}\left( {{n^2} + 3n + 8} \right)$$
C
$$\frac{1}{6}\left( {{n^2} - 3n + 8} \right)$$
D
$$\frac{n}{6}\left( {{n^2} - 3n + 8} \right)$$
Answer :
$$\frac{n}{6}\left( {{n^2} + 3n + 8} \right)$$
View Solution
Discuss Question
We have, $$S = 2 + 4 + 7 + 11 + 16 + ..... + {T_n}$$
Again, $$S = 2 + 4 + 7 + 11 + 16 + ..... + {T_{n - 1}} + {T_n}$$
Subtracting, we get
$$\eqalign{
& 0 = 2 + \left\{ {2 + 3 + 4 + 5 + ..... + \left( {{T_n} - {T_{n - 1}}} \right)} \right\} - {T_n} \cr
& {T_n} = 2 + \frac{1}{2}\left( {n - 1} \right)\left( {4 + \left\{ {n - 2} \right\}1} \right) = \frac{1}{2}\left( {{n^2} + n + 2} \right) \cr
& {\text{Now,}} \cr
& S = \sum {{T_n} = \frac{1}{2}\sum {\left( {{n^2} + n + 2} \right) = \frac{1}{2}\left( {\sum {{n^2} + \sum {n + 2\sum 1 } } } \right)} } \cr
& = \frac{1}{2}\left\{ {\frac{1}{6}n\left( {n + 1} \right)\left( {2n + 1} \right) + \frac{1}{2}n\left( {n + 1} \right) + 2n} \right\} \cr
& = \frac{n}{{12}}\left\{ {\left( {n + 1} \right)\left( {2n + 1 + 3} \right) + 12} \right\} \cr
& = \frac{n}{6}\left\{ {\left( {n + 1} \right)\left( {n + 2} \right) + 6} \right\} = \frac{n}{6}\left( {{n^2} + 3n + 8} \right) \cr} $$
27.
If $$a, b, c$$ are in A. P., then $$\left( {a + 2b - c} \right)\left( {2b + c - a} \right)\left( {c + a - b} \right)$$ equals
A
$$\frac{1}{2}abc$$
B
$$abc$$
C
$$2\,abc$$
D
$$4\,abc$$
Answer :
$$4\,abc$$
View Solution
Discuss Question
$$2b = a + c,$$ so the given expression is
$$\left( {a + a + c - c} \right)\left( {a + c + c - a} \right)\left( {2b - b} \right) = 4\,abc$$
28.
The roots of the equation $${\left| {x - 1} \right|^2} - 4\left| {x - 1} \right| + 3 = 0$$
A
form an A.P.
B
form a G.P.
C
form an H.P.
D
do not form any progression
Answer :
form an A.P.
View Solution
Discuss Question
The given eq. can be written as
$$\eqalign{
& {\left| {x - 1} \right|^2} - 4\left| {x - 1} \right| + 3 = 0 \cr
& \Rightarrow \left( {\left| {x - 1} \right| - 3} \right)\left( {\left| {x - 1} \right| - 1} \right) = 0 \cr
& {\text{If }}\left| {x - 1} \right| - 3 = 0 \cr
& \Rightarrow x - 1 = \pm 3 \cr
& \Rightarrow x = - 2\,\,{\text{or 4}} \cr
& {\text{If }}\left| {x - 1} \right| - 1 = 0 \cr
& \Rightarrow x - 1 = \pm 1 \cr
& \Rightarrow x = 0\,\,{\text{or 2}} \cr} $$
The four roots are $$– 2, 0, 2, 4$$ and are in A.P.
29.
What is the greatest value of the positive integer $$n$$ satisfying the condition $$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .... + \frac{1}{{{2^{n - 1}}}} < 2 - \frac{1}{{1000}}?$$
A
8
B
9
C
10
D
11
Answer :
10
View Solution
Discuss Question
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .... + \frac{1}{{{2^{n - 1}}}} < 2 - \frac{1}{{1000}}$$
LHS of given inequality is in G.P.
$$\eqalign{
& \therefore \frac{{1 - \frac{1}{{{2^n}}}}}{{1 - \frac{1}{2}}} < 2 - \frac{1}{{1000}} \cr
& \Rightarrow 2 - \frac{1}{{{2^{n - 1}}}} < 2 - \frac{1}{{100}} \cr
& \Rightarrow {2^{n - 1}} < 1000 \cr
& {\text{Now, }}{\left( 2 \right)^9} = 512\,\,\& \,\,{\left( 2 \right)^{10}} = 1024 \cr
& \therefore n - 1 = 9 \cr
& \Rightarrow n = 10. \cr} $$
30.
If $${\left( {10} \right)^9} + 2{\left( {11} \right)^1}{\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ...... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9},$$ then $$k$$ is equal to:
A
100
B
110
C
$$\frac{{121}}{{10}}$$
D
$$\frac{{441}}{{100}}$$
Answer :
100
View Solution
Discuss Question
$$\eqalign{
& {\text{Let }}{10^9} + 2 \cdot \left( {11} \right){\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ..... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9} \cr
& {\text{Let }}x = {10^9} + 2 \cdot \left( {11} \right){\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ..... + 10{\left( {11} \right)^9} \cr
& {\text{Multiplied by }}\frac{{11}}{{10}}{\text{ on both the sides}} \cr
& \frac{{11}}{{10}}x = {11.10^8} + 2.{\left( {11} \right)^2}.{\left( {10} \right)^7} + ..... + 9{\left( {11} \right)^9} + {11^{10}} \cr
& x\left( {1 - \frac{{11}}{{10}}} \right) = {10^9} + 11{\left( {10} \right)^8} + {11^2} \times {\left( {10} \right)^7} + ..... + {11^9} - {11^{10}} \cr
& \Rightarrow \,\,\, - \frac{x}{{10}} = {10^9}\left[ {\frac{{{{\left( {\frac{{11}}{{10}}} \right)}^{10}} - 1}}{{\frac{{11}}{{10}} - 1}}} \right] - {11^{10}} \cr
& \Rightarrow \,\, - {\frac{x}{{10}}} = \left( {{{11}^{10}} - {{10}^{10}}} \right) - {11^{10}} = - {10^{10}} \cr
& \Rightarrow \,\,x = {10^{11}} = k{.10^9} \cr
& {\text{Given }} \Rightarrow \,\,{\text{k = 100}} \cr} $$