21. The sum of an infinite G.P. is $$x$$ and the common ratio $$r$$ is such that $$\left| r \right| < 1.$$  If the first term of the G.P. is 2, then which one of the following is correct ?

A $$ - 1 < x < 1$$
B $$ - \infty < x < 1$$
C $$ 1 < x < \infty$$
D None of these
Answer :   $$ 1 < x < \infty$$
Discuss Question

22. Sum of the first $$n$$ terms of the series $$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ......$$      is equal to

A $${2^n} - n - 1$$
B $$1 - {2^{ - n}}$$
C $$n + {2^{ - n}} - 1$$
D $${2^n} + 1$$
Answer :   $$n + {2^{ - n}} - 1$$
Discuss Question

23. Let there be a GP whose first term is $$a$$ and the common ratio is $$r.$$ If $$A$$ and $$H$$ are the arithmetic mean and the harmonic mean respectively for the first $$n$$ terms of the GP, $$A \cdot H$$  is equal to

A $${a^2}{r^{n - 1}}$$
B $${a}{r^n}$$
C $${a^2}{r^n}$$
D none of these
Answer :   $${a^2}{r^{n - 1}}$$
Discuss Question

24. If $$\left| x \right| < \frac{1}{2},$$  what is the value of $$1 + n\left[ {\frac{x}{{1 - x}}} \right] + \left[ {\frac{{n\left( {n + 1} \right)}}{{2\,!}}} \right]{\left[ {\frac{x}{{1 - x}}} \right]^2} + .....\,\infty \,?$$

A $${\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$
B $${\left( {1 - x} \right)^n}$$
C $${\left[ {\frac{{1 - 2x}}{{1 - x}}} \right]^n}$$
D $${\left( {\frac{1}{{1 - x}}} \right)^n}$$
Answer :   $${\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$
Discuss Question

25. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after

A 19 months
B 20 months
C 21 months
D 18 months
Answer :   21 months
Discuss Question

26. $$2 + 4 + 7 + 11 + 16 + . . . . .\,$$     to $$n$$ terms =

A $$\frac{1}{6}\left( {{n^2} + 3n + 8} \right)$$
B $$\frac{n}{6}\left( {{n^2} + 3n + 8} \right)$$
C $$\frac{1}{6}\left( {{n^2} - 3n + 8} \right)$$
D $$\frac{n}{6}\left( {{n^2} - 3n + 8} \right)$$
Answer :   $$\frac{n}{6}\left( {{n^2} + 3n + 8} \right)$$
Discuss Question

27. If $$a, b, c$$  are in A. P., then $$\left( {a + 2b - c} \right)\left( {2b + c - a} \right)\left( {c + a - b} \right)$$       equals

A $$\frac{1}{2}abc$$
B $$abc$$
C $$2\,abc$$
D $$4\,abc$$
Answer :   $$4\,abc$$
Discuss Question

28. The roots of the equation $${\left| {x - 1} \right|^2} - 4\left| {x - 1} \right| + 3 = 0$$

A form an A.P.
B form a G.P.
C form an H.P.
D do not form any progression
Answer :   form an A.P.
Discuss Question

29. What is the greatest value of the positive integer $$n$$ satisfying the condition $$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .... + \frac{1}{{{2^{n - 1}}}} < 2 - \frac{1}{{1000}}?$$

A 8
B 9
C 10
D 11
Answer :   10
Discuss Question

30. If $${\left( {10} \right)^9} + 2{\left( {11} \right)^1}{\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ...... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9},$$            then $$k$$ is equal to:

A 100
B 110
C $$\frac{{121}}{{10}}$$
D $$\frac{{441}}{{100}}$$
Answer :   100
Discuss Question


Practice More MCQ Question on Maths Section