1. In a $$\vartriangle ABC,a = 2b$$    and $$\left| {A - B} \right| = \frac{\pi }{3}.$$   The measure of $$\angle C$$ is

A $$\frac{\pi }{4}$$
B $$\frac{\pi }{3}$$
C $$\frac{\pi }{6}$$
D None of these
Answer :   $$\frac{\pi }{3}$$
Discuss Question

2. In a $$\vartriangle ABC,\cos B \cdot \cos C + \sin B \cdot \sin C \cdot {\sin ^2}A = 1.$$         Then the triangle is

A right-angled isosceles
B isosceles whose equal angles are greater than $$\frac{\pi }{4}$$
C equilateral
D None of these
Answer :   right-angled isosceles
Discuss Question

3. In a triangle $$ABC,$$  medians $$AD$$  and $$BE$$  are drawn. If $$AD = 4,$$   $$\angle DAB = \frac{\pi }{6}$$   and $$\angle ABE = \frac{\pi }{3} ,$$   then the area of the $$\Delta \,ABC$$  is

A $$\frac{{64}}{3}$$
B $$\frac{{8}}{3}$$
C $$\frac{{16}}{3}$$
D $$\frac{{32}}{{3\sqrt 3 }}$$
Answer :   $$\frac{{32}}{{3\sqrt 3 }}$$
Discuss Question

4. If $$BD, BE$$  and $$CF$$  are the medians of a $$\vartriangle ABC$$  then $$\left( {A{D^2} + B{E^2} + C{F^2}} \right):\left( {B{C^2} + C{A^2} + A{B^2}} \right)$$         is equal to

A 4 : 3
B 3 : 2
C 3 : 4
D 2 : 3
Answer :   3 : 4
Discuss Question

5. In a triangle $$ABC,$$  let $$\angle C = \frac{\pi }{2}.$$   If $$r$$ is the inradius and $$R$$ is the circumradius of the triangle $$ABC,$$  then $$2 (r+ R)$$  equals

A $$b + c$$
B $$a + b$$
C $$a + b + c$$
D $$c + a$$
Answer :   $$a + b$$
Discuss Question

6. In a $$\vartriangle ABC,A = \frac{{2\pi }}{3},b - c = 3\sqrt 3 \,cm$$       and $${\text{ar}}\left( {\vartriangle ABC} \right) = \frac{{9\sqrt 3 }}{2}\,c{m^2}.$$     Then $$a$$ is

A $$6\sqrt 3 \,cm$$
B $$9\,cm$$
C $$18\,cm$$
D None of these
Answer :   $$9\,cm$$
Discuss Question

7. In a $$\vartriangle ABC,A:B:C = 3:5:4.$$      Then $$a + b + c\sqrt 2 $$   is equal to

A $$2b$$
B $$2c$$
C $$3b$$
D $$3a$$
Answer :   $$3b$$
Discuss Question

8. In a triangle $$ABC, a, b, c$$   are the lengths of its sides and $$A, B, C$$  are the angles of triangle $$ABC.$$  The correct relation is given by

A $$\left( {b - c} \right)\sin \left( {\frac{{B - C}}{2}} \right) = a\cos \frac{A}{2}$$
B $$\left( {b - c} \right)\cos \left( {\frac{A}{2}} \right) = a\sin \frac{{B - C}}{2}$$
C $$\left( {b + c} \right)\sin \left( {\frac{{B + C}}{2}} \right) = a\cos \frac{A}{2}$$
D $$\left( {b - c} \right)\cos \left( {\frac{A}{2}} \right) = 2a\sin \frac{{B + C}}{2}$$
Answer :   $$\left( {b - c} \right)\cos \left( {\frac{A}{2}} \right) = a\sin \frac{{B - C}}{2}$$
Discuss Question

9. In an equilateral triangle, 3 coins of radii 1 unit each are kept so that they touch each other and also the sides of the triangle. Area of the triangle is
Properties and Solutons of Triangle mcq question image

A $$4 + 2\sqrt 3 $$
B $$6 + 4\sqrt 3 $$
C $$12 + \frac{{7\sqrt 3 }}{4}$$
D $$3 + \frac{{7\sqrt 3 }}{4}$$
Answer :   $$6 + 4\sqrt 3 $$
Discuss Question

10. In a $$\vartriangle ABC,\cos A = \frac{3}{5}$$    and $$\cos B = \frac{5}{{13}}.$$   The value of $$\cos C$$  can be

A $$\frac{7}{{13}}$$
B $$\frac{12}{{13}}$$
C $$\frac{33}{{65}}$$
D None of these
Answer :   $$\frac{33}{{65}}$$
Discuss Question


Practice More MCQ Question on Maths Section