101. The sum of $$n$$ terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + .....\,{\text{is }}\frac{{n{{\left( {n + 1} \right)}^2}}}{2}$$           when $$n$$ is even. When $$n$$ is odd, the sum is

A $$\frac{{{n^2}\left( {n + 1} \right)}}{2}$$
B $$\frac{{n\left( {{n^2} - 1} \right)}}{2}$$
C $$2{\left( {n + 1} \right)^2} \cdot \left( {2n + 1} \right)$$
D none of these
Answer :   $$\frac{{{n^2}\left( {n + 1} \right)}}{2}$$
Discuss Question

102. If $${a_1},{a_2},{a_3},.....,{a_n}$$    are in A.P. and $$\frac{1}{{{a_1}{a_n}}} + \frac{1}{{{a_2}{a_{n - 1}}}} + \frac{1}{{{a_3}{a_{n - 2}}}} + ..... + \frac{1}{{{a_n}{a_1}}} = K\left( {\frac{1}{{{a_1}}} + \frac{1}{{{a_2}}} + \frac{1}{{{a_3}}} + ..... + \frac{1}{{{a_n}}}} \right).{\text{ Then }}K{\text{ is}}$$

A $$\frac{2}{{{a_1} + {a_n}}}$$
B $$\frac{n}{{{a_1} + {a_n}}}$$
C $$\frac{1}{{{a_1} + {a_n}}}$$
D $$\frac{n - 1}{{{a_1} + {a_n}}}$$
Answer :   $$\frac{2}{{{a_1} + {a_n}}}$$
Discuss Question

103. What is the product of first $$2n + 1$$  terms of a geometric progression ?

A The $${\left( {n + 1} \right)^{th}}$$   power of the $$n^{th}$$ term of the G.P.
B The $${\left( {2n + 1} \right)^{th}}$$   power of the $$n^{th}$$ term of the G.P.
C The $${\left( {2n + 1} \right)^{th}}$$   power of the $${\left( {n + 1} \right)^{th}}$$   term of the G.P.
D The $$n^{th}$$ power of the $${\left( {n + 1} \right)^{th}}$$   term of the G.P.
Answer :   The $${\left( {2n + 1} \right)^{th}}$$   power of the $${\left( {n + 1} \right)^{th}}$$   term of the G.P.
Discuss Question

104. Three numbers are in G.P. such that their sum is 38 and their product is 1728. The greatest number among them is :

A 18
B 16
C 14
D None of these
Answer :   18
Discuss Question

105. $${A_r};r = 1,2,3,.....,n$$     are $$n$$ points on the parabola $${y^2} = 4x$$  in the first quadrant. If $${A_r} = \left( {{x_r},{y_r}} \right),$$   where $${x_1},{x_2},{x_3},.....,{x_n}$$    are in G.P. and $${x_1} = 1,{x_2} = 2,$$   they $${y_n}$$ is equal to

A $$ - {2^{\frac{{n + 1}}{2}}}$$
B $${2^{n + 1}}$$
C $${\left( {\sqrt 2 } \right)^{n + 1}}$$
D $${2^{\frac{{n}}{2}}}$$
Answer :   $${\left( {\sqrt 2 } \right)^{n + 1}}$$
Discuss Question

106. It is given that $$\frac{1}{{{2^n}\sin \alpha }},1,{2^n}\sin \alpha$$    are in A.P. for some value of $$\alpha .$$ Let say for $$n = 1,$$  the $$\alpha $$ satisfying the above A.P. is $${\alpha _1},$$ for $$n = 2,$$  the value is $${\alpha _2}$$ and so on. If $$S = \sum\limits_{i = 1}^\infty {\sin {\alpha _i}} ,$$   then the value of $$S$$ is

A 1
B $$\frac{1}{2}$$
C 2
D None of these
Answer :   1
Discuss Question

107. In the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . . . , where $$n$$ consecutive terms have the value $$n,$$ the $${150^{th}}$$  term is

A 17
B 16
C 18
D none of these
Answer :   17
Discuss Question

108. If the positive integers $$a, b, c, d$$   are in A.P., then the numbers $$abc, abd, acd, bcd$$    are in

A H.P.
B A.P.
C G.P.
D None of the above
Answer :   H.P.
Discuss Question

109. The number of terms common between the series 1 + 2 + 4 + 8 + . . . . . to 100 terms and 1 + 4 + 7 + 10 + . . . . . to 100 terms is

A 6
B 4
C 5
D none of these
Answer :   5
Discuss Question

110. If $${a^2},{b^2},{c^2}$$  are in A.P. consider two statements
$$\eqalign{ & \left( {\text{i}} \right)\frac{1}{{b + c}},\frac{1}{{c + a}},\frac{1}{{a + b}}\,{\text{are in A}}{\text{.P}}{\text{.}} \cr & \left( {{\text{ii}}} \right)\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}\,{\text{are in A}}{\text{.P}}{\text{.}} \cr} $$

A (i) and (ii) both correct
B (i) and (ii) both incorrect
C (i) correct (ii) incorrect
D (i) incorrect (ii) correct
Answer :   (i) and (ii) both correct
Discuss Question


Practice More MCQ Question on Maths Section