1. If $$\left| z \right| = \max \left\{ {\left| {z - 1} \right|,\left| {z + 1} \right|} \right\}$$      then

A $$\left| {z + \overline z } \right| = \frac{1}{2}$$
B $$ {z + \overline z } = 1$$
C $$\left| {z + \overline z } \right| = 1$$
D None of these
Answer :   $$\left| {z + \overline z } \right| = 1$$
Discuss Question

2. If $${z^2} + z + 1 = 0,$$   where $$z$$ is complex number, then the value of
$${\left( {z + \frac{1}{z}} \right)^2} + {\left( {{z^2} + \frac{1}{{{z^2}}}} \right)^2} + {\left( {{z^3} + \frac{1}{{{z^3}}}} \right)^2} + ...... + \left( {{z^6} + \frac{1}{{{z^6}}}} \right)\,{\text{is}}$$

A 18
B 54
C 6
D 12
Answer :   12
Discuss Question

3. If $$m_1 , m_2 , m_3$$   and $$m_4$$ respectively denote the moduli of the complex numbers $$1 + 4i, 3 + i, 1 – i$$    and $$2 – 3i,$$  then the correct one, among the following is

A $${m_1} < {m_2} < {m_3} < {m_4}$$
B $${m_4} < {m_3} < {m_2} < {m_1}$$
C $${m_3} < {m_2} < {m_4} < {m_1}$$
D $${m_3} < {m_1} < {m_2} < {m_4}$$
Answer :   $${m_3} < {m_2} < {m_4} < {m_1}$$
Discuss Question

4. $$z$$ and $$w$$ are two nonzero complex numbers such that $$\left| z \right| = \left| w \right|\,\,{\text{and Arg}}\,z + {\text{Agr}}\,w = \pi $$       then $$z$$ equals

A $$\overline \omega $$
B $$ - \overline \omega $$
C $$\omega $$
D $$ - \omega $$
Answer :   $$ - \overline \omega $$
Discuss Question

5. If $${z_1}\,{\text{and }}{z_2}$$   are two non- zero complex numbers such that $$\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|,{\text{then arg }}{z_1} - {\text{arg }}{z_2}$$        is equal to

A $$\frac{\pi }{2}$$
B $$ - \pi $$
C $$0$$
D $$ \frac{ - \pi }{2}$$
Answer :   $$0$$
Discuss Question

6. If $$\operatorname{Re} \left( {\frac{{z - 1}}{{z + 1}}} \right) = 0,$$    where $$2 = x + iy$$   is a complex number, then which one of the following is correct ?

A $$z = 1 + i$$
B $$\left| z \right| = 2$$
C $$z = 1 - i$$
D $$\left| z \right| = 1$$
Answer :   $$\left| z \right| = 1$$
Discuss Question

7. If $$z = x + iy\,\,{\text{and }}\omega = \frac{{\left( {1 - iz} \right)}}{{\left( {z - i} \right)}},{\text{then }}\left| \omega \right| = 1$$        implies that, in the complex plane,

A $$z$$ lies on the imaginary axis
B $$z$$ lies on the real axis
C $$z$$ lies on the unit circle
D None of these
Answer :   $$z$$ lies on the real axis
Discuss Question

8. If $$P,P'$$  represent the complex number $${z_1}$$ and its additive inverse respectively then the complex equation of the circle with $$PP'$$  as a diameter is

A $$\frac{z}{{{z_1}}} = \left( {\frac{{{{\overline z }_1}}}{z}} \right)$$
B $$z\overline z + {z_1}{\overline z _1} = 0$$
C $$z{\overline z _1} + \overline z {z_1} = 0$$
D None of these
Answer :   $$\frac{z}{{{z_1}}} = \left( {\frac{{{{\overline z }_1}}}{z}} \right)$$
Discuss Question

9. If $$f\left( z \right) = \frac{{7 - z}}{{1 - {z^2}}} ,$$    where $$z = 1 + 2i,$$   then $$\left| {f\left( z \right)} \right|$$  is equal to :

A $$\frac{{\left| z \right|}}{2}$$
B $${\left| z \right|}$$
C $$2{\left| z \right|}$$
D None of these
Answer :   $$\frac{{\left| z \right|}}{2}$$
Discuss Question

10. If $${z_1},{z_2}$$  are two non-zero complex numbers such that $$\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|$$     then $${\text{amp}}\frac{{{z_1}}}{{{z_2}}}$$  is equal to

A $$\pi $$
B $$ - \pi $$
C $$0$$
D $$\frac{\pi }{2}$$
Answer :   $$0$$
Discuss Question


Practice More MCQ Question on Maths Section