11. If $$m^{th}$$ terms of the series $$63 + 65 + 67 + 69 + . . . . .\,$$     and $$3 + 10 +17 + 24 + . . . . .\,$$     be equal, then $$m =$$

A 11
B 12
C 13
D 15
Answer :   13
Discuss Question

12. It is known that $$\sum\limits_{r = 1}^\infty {\frac{1}{{{{\left( {2r - 1} \right)}^2}}} = \frac{{{\pi ^2}}}{8}.} $$    Then $$\sum\limits_{r = 1}^\infty {\frac{1}{{{r^2}}}} $$  is equal to

A $$\frac{{{\pi ^2}}}{{24}}$$
B $$\frac{{{\pi ^2}}}{{3}}$$
C $$\frac{{{\pi ^2}}}{{6}}$$
D none of these
Answer :   $$\frac{{{\pi ^2}}}{{6}}$$
Discuss Question

13. Statement - 1: The sum of the series $$1 + \left( {1 + 2 + 4} \right) + \left( {4 + 6 + 9} \right) + \left( {9 + 12 + 16} \right) + .....\left( {361 + 380 + 400} \right){\text{ is }}8000.$$
Statement - 2: $$\sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right) = {n^3},} $$     for any natural number $$n$$ .

A Statement - 1 is false, Statement - 2 is true.
B Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
C Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
D Statement - 1 is true, Statement - 2 is false.
Answer :   Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
Discuss Question

14. $${\left( {x + \frac{1}{x}} \right)^2} + {\left( {{x^2} + \frac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \frac{1}{{{x^3}}}} \right)^2}....\,{\text{upto }}n{\text{ terms is}}$$

A $$\frac{{{x^{2n}} - 1}}{{{x^2} - 1}} \times \frac{{{x^{2n + 2}} + 1}}{{{x^{2n}}}} + 2n$$
B $$\frac{{{x^{2n}} + 1}}{{{x^2} + 1}} \times \frac{{{x^{2n + 2}} - 1}}{{{x^{2n}}}} - 2n$$
C $$\frac{{{x^{2n}} - 1}}{{{x^2} - 1}} \times \frac{{{x^{2n}} - 1}}{{{x^{2n}}}} - 2n$$
D None of these
Answer :   $$\frac{{{x^{2n}} - 1}}{{{x^2} - 1}} \times \frac{{{x^{2n + 2}} + 1}}{{{x^{2n}}}} + 2n$$
Discuss Question

15. If $$a, b$$  and $$c$$ are in H. P. then the value of $$\left( {\frac{1}{b} + \frac{1}{c} - \frac{1}{a}} \right)\left( {\frac{1}{c} + \frac{1}{a} - \frac{1}{b}} \right){\text{is :}}$$

A $$\frac{2}{{bc}} + \frac{1}{{{b^2}}}$$
B $$\frac{3}{{c^2}} + \frac{2}{{{ca}}}$$
C $$\frac{3}{{b^2}} - \frac{2}{{{ab}}}$$
D None of these
Answer :   $$\frac{3}{{b^2}} - \frac{2}{{{ab}}}$$
Discuss Question

16. If $${a_1},{a_2},{a_3},.....$$    are in A.P. then $${a_p},{a_q},{a_r}$$  are in A.P. if $$p,q,r$$  are in

A A.P.
B G.P.
C H.P.
D None of these
Answer :   A.P.
Discuss Question

17. The $$100^{th}$$  term of the sequence $$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . . .$$       is

A 12
B 13
C 14
D 15
Answer :   14
Discuss Question

18. Observe that $${1^3} = 1,{2^3} = 3 + 5,{3^3} = 7 + 9 + 11,{4^3} = 13 + 15 + 17 + 19.$$           Then $${n^3}$$ as a similar series is

A $$\left[ {2\left\{ {\frac{{n\left( {n - 1} \right)}}{2} + 1} \right\} - 1} \right] + \left[ {2\left\{ {\frac{{\left( {n + 1} \right)n}}{2} + 1} \right\} + 1} \right] + ..... + \left[ {2\left\{ {\frac{{\left( {n + 1} \right)n}}{2} + 1} \right\} + 2n - 3} \right]$$
B $$\left( {{n^2} + n + 1} \right) + \left( {{n^2} + n + 3} \right) + \left( {{n^2} + n + 5} \right) + ..... + \left( {{n^2} + 3n - 1} \right)$$
C $$\left( {{n^2} - n + 1} \right) + \left( {{n^2} - n + 3} \right) + \left( {{n^2} - n + 5} \right) + ..... + \left( {{n^2} + n - 1} \right)$$
D none of these
Answer :   $$\left( {{n^2} - n + 1} \right) + \left( {{n^2} - n + 3} \right) + \left( {{n^2} - n + 5} \right) + ..... + \left( {{n^2} + n - 1} \right)$$
Discuss Question

19. Let $$A$$ be the sum of the first 20 terms and $$B$$ be the sum of the first 40 terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + .....$$        If $$B - 2A = 100\lambda ,$$    $${\text{then }}\lambda {\text{ is equal to}}$$ :

A 248
B 464
C 496
D 232
Answer :   248
Discuss Question

20. The harmonic mean $$H$$ of two numbers is 4 and the arithmetic mean $$A$$ and geometric mean $$G$$ satisfy the equation $$2A + G^2 = 27.$$   The two numbers are

A 6, 3
B 9, 5
C 12, 7
D 3, 1
Answer :   6, 3
Discuss Question


Practice More MCQ Question on Maths Section