11.
If $$m^{th}$$ terms of the series $$63 + 65 + 67 + 69 + . . . . .\,$$ and $$3 + 10 +17 + 24 + . . . . .\,$$ be equal, then $$m =$$
A
11
B
12
C
13
D
15
Answer :
13
View Solution
Discuss Question
Given series $$63 + 65 + 67 + 69 \,. . . .\,\,\,\, …\left( {\text{i}} \right)$$
and $$3 + 10 + 17 + 24 \,. . . . \,\,\,\, …\left( {\text{ii}} \right)$$
Now from (i), $$m^{th}$$ term $$ = \left( {2m + 61} \right)$$
and $$m^{th}$$ term of (ii) series $$ = \left( {7m - 4} \right)$$
Under condition
⇒ $$7m - 4 = 2m + 61$$
⇒ $$5m = 65$$
⇒ $$m = 13.$$
12.
It is known that $$\sum\limits_{r = 1}^\infty {\frac{1}{{{{\left( {2r - 1} \right)}^2}}} = \frac{{{\pi ^2}}}{8}.} $$ Then $$\sum\limits_{r = 1}^\infty {\frac{1}{{{r^2}}}} $$ is equal to
A
$$\frac{{{\pi ^2}}}{{24}}$$
B
$$\frac{{{\pi ^2}}}{{3}}$$
C
$$\frac{{{\pi ^2}}}{{6}}$$
D
none of these
Answer :
$$\frac{{{\pi ^2}}}{{6}}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Here }}\frac{1}{{{1^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{5^2}}} + .....\,{\text{to }}\infty = \frac{{{\pi ^2}}}{8}. \cr
& {\text{Let}}\,\frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + .....\,{\text{to }}\infty = x. \cr
& {\text{Then }}\,x = \frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + .....\,{\text{to }}\infty \cr
& = \left( {\frac{1}{{{1^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{5^2}}} + .....\,{\text{to }}\infty } \right) + \left( {\frac{1}{{{2^2}}} + \frac{1}{{{4^2}}} + \frac{1}{{{6^2}}} + .....\,{\text{to }}\infty } \right) \cr
& = \frac{{{\pi ^2}}}{8} + \frac{1}{4}\left( {\frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + .....\,{\text{to }}\infty } \right) \cr
& = \frac{{{\pi ^2}}}{8} + \frac{1}{4}x. \cr} $$
13.
Statement - 1: The sum of the series $$1 + \left( {1 + 2 + 4} \right) + \left( {4 + 6 + 9} \right) + \left( {9 + 12 + 16} \right) + .....\left( {361 + 380 + 400} \right){\text{ is }}8000.$$
Statement - 2: $$\sum\limits_{k = 1}^n {\left( {{k^3} - {{\left( {k - 1} \right)}^3}} \right) = {n^3},} $$ for any natural number $$n$$ .
A
Statement - 1 is false, Statement - 2 is true.
B
Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
C
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
D
Statement - 1 is true, Statement - 2 is false.
Answer :
Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
View Solution
Discuss Question
$${{n^{th}}}$$ term of the given series
$$\eqalign{
& = \,\,{T_n} = {\left( {n - 1} \right)^2} + \left( {n - 1} \right)n + {n^2} \cr
& = \,\,\frac{{\left( {{{\left( {n - 1} \right)}^3} - {n^3}} \right)}}{{\left( {n - 1} \right) - n}} \cr
& = \,\,{n^3} - {\left( {n - 1} \right)^3} \cr
& \Rightarrow \,\,{S_n} = \sum\limits_{k = 1}^n {\left[ {{k^3} - {{\left( {k - 1} \right)}^3}} \right]} \cr
& \Rightarrow \,\,8000 = {n^3} \cr
& \Rightarrow \,\,n = 20{\text{ which is a natural number}}{\text{.}} \cr
& {\text{Now, put }}n = 1,2,3,.....,20 \cr
& {T_1} = {1^3} - {0^3} \cr
& {T_2} = {2^3} - {1^3} \cr
& \cdot \cr
& \cdot \cr
& \cdot \cr
& {T_{20}} = {20^3} - {19^3} \cr
& {\text{Now, }}{T_1} + {T_2} + - - - + {T_{20}} = {S_{20}} \cr
& \Rightarrow \,\,{S_{20}} = {20^3} - {0^3} = 8000 \cr
& {\text{Hence, both the given statements are true and}} \cr
& {\text{statement 2 supports statement 1}}{\text{.}} \cr} $$
14.
$${\left( {x + \frac{1}{x}} \right)^2} + {\left( {{x^2} + \frac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \frac{1}{{{x^3}}}} \right)^2}....\,{\text{upto }}n{\text{ terms is}}$$
A
$$\frac{{{x^{2n}} - 1}}{{{x^2} - 1}} \times \frac{{{x^{2n + 2}} + 1}}{{{x^{2n}}}} + 2n$$
B
$$\frac{{{x^{2n}} + 1}}{{{x^2} + 1}} \times \frac{{{x^{2n + 2}} - 1}}{{{x^{2n}}}} - 2n$$
C
$$\frac{{{x^{2n}} - 1}}{{{x^2} - 1}} \times \frac{{{x^{2n}} - 1}}{{{x^{2n}}}} - 2n$$
D
None of these
Answer :
$$\frac{{{x^{2n}} - 1}}{{{x^2} - 1}} \times \frac{{{x^{2n + 2}} + 1}}{{{x^{2n}}}} + 2n$$
View Solution
Discuss Question
The series is
$$\eqalign{
& \left( {{x^2} + {x^4} + {x^6} + \,{\text{upto }}n{\text{ terms}}} \right) + \left( {\frac{1}{{{x^2}}} + \frac{1}{{{x^4}}} + \frac{1}{{{x^6}}} + {\text{upto }}n{\text{ terms}}} \right) + 2 + \left. {{\text{upto }}n{\text{ terms}}} \right) \cr
& = \frac{{{x^2}\left( {{x^{2n}} - 1} \right)}}{{{x^2} - 1}} + \frac{{\frac{1}{{{x^2}}}\left( {1 - \frac{1}{{{x^{2n}}}}} \right)}}{{1 - \frac{1}{{{x^2}}}}} + 2n \cr
& = \frac{{{x^2}\left( {{x^{2n}} - 1} \right)}}{{{x^2} - 1}} + \frac{{{x^{2n}} - 1}}{{\left( {{x^2} - 1} \right){x^{2n}}}} + 2n \cr
& = \frac{{{x^{2n}} - 1}}{{{x^2} - 1}} \times \frac{{{x^{2n + 2}} + 1}}{{{x^{2n}}}} + 2n \cr} $$
15.
If $$a, b$$ and $$c$$ are in H. P. then the value of $$\left( {\frac{1}{b} + \frac{1}{c} - \frac{1}{a}} \right)\left( {\frac{1}{c} + \frac{1}{a} - \frac{1}{b}} \right){\text{is :}}$$
A
$$\frac{2}{{bc}} + \frac{1}{{{b^2}}}$$
B
$$\frac{3}{{c^2}} + \frac{2}{{{ca}}}$$
C
$$\frac{3}{{b^2}} - \frac{2}{{{ab}}}$$
D
None of these
Answer :
$$\frac{3}{{b^2}} - \frac{2}{{{ab}}}$$
View Solution
Discuss Question
Let $$a, b$$ and $$c$$ are in H.P.
$$\eqalign{
& \therefore \frac{1}{a},\frac{1}{b},\frac{1}{c}\,{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \therefore \frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b} \cr
& \Rightarrow \frac{1}{c} = \frac{2}{b} - \frac{1}{a} \cr
& {\text{Consider }}\left( {\frac{1}{b} + \frac{1}{c} - \frac{1}{a}} \right)\left( {\frac{1}{c} + \frac{1}{a} - \frac{1}{b}} \right) \cr
& = \left( {\frac{1}{b} + \frac{2}{b} - \frac{1}{a} - \frac{1}{a}} \right)\left( {\frac{2}{b} - \frac{1}{b}} \right) \cr
& {\text{Using }}\frac{1}{a} + \frac{1}{c} = \frac{2}{b} = \left( {\frac{3}{b} - \frac{2}{a}} \right)\left( {\frac{1}{b}} \right) = \frac{3}{{{b^2}}} - \frac{2}{{ab}} \cr} $$
16.
If $${a_1},{a_2},{a_3},.....$$ are in A.P. then $${a_p},{a_q},{a_r}$$ are in A.P. if $$p,q,r$$ are in
A
A.P.
B
G.P.
C
H.P.
D
None of these
Answer :
A.P.
View Solution
Discuss Question
If $$p, q, r$$ are in A.P. then in an A.P. or a G.P. or an H.P. $${a_1},{a_2},{a_3},.....,$$ etc., the terms $${a_p},{a_q},{a_r}$$ are in A.P., G.P. or H.P. respectively.
17.
The $$100^{th}$$ term of the sequence $$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . . .$$ is
A
12
B
13
C
14
D
15
Answer :
14
View Solution
Discuss Question
$$1^{st}$$ term $$→ 1,$$ $$2^{nd}$$ term $$= 2,$$ $$4^{th}$$ term $$→ 3,$$ $$7^{th}$$ term $$→ 4,$$ $$11^{th}$$ term $$→ 5, . . . . .$$
Series is $$1, 2, 4, 7, 11, . . . . .$$
$${a_n} = 1 + \frac{{n\left( {n - 1} \right)}}{2} = \frac{{{n^2} - n + 2}}{2}$$
If $$n = 14,$$ then $$a_n = 92,$$
If $$n = 15,$$ then $$a_n = 106.$$
18.
Observe that $${1^3} = 1,{2^3} = 3 + 5,{3^3} = 7 + 9 + 11,{4^3} = 13 + 15 + 17 + 19.$$ Then $${n^3}$$ as a similar series is
A
$$\left[ {2\left\{ {\frac{{n\left( {n - 1} \right)}}{2} + 1} \right\} - 1} \right] + \left[ {2\left\{ {\frac{{\left( {n + 1} \right)n}}{2} + 1} \right\} + 1} \right] + ..... + \left[ {2\left\{ {\frac{{\left( {n + 1} \right)n}}{2} + 1} \right\} + 2n - 3} \right]$$
B
$$\left( {{n^2} + n + 1} \right) + \left( {{n^2} + n + 3} \right) + \left( {{n^2} + n + 5} \right) + ..... + \left( {{n^2} + 3n - 1} \right)$$
C
$$\left( {{n^2} - n + 1} \right) + \left( {{n^2} - n + 3} \right) + \left( {{n^2} - n + 5} \right) + ..... + \left( {{n^2} + n - 1} \right)$$
D
none of these
Answer :
$$\left( {{n^2} - n + 1} \right) + \left( {{n^2} - n + 3} \right) + \left( {{n^2} - n + 5} \right) + ..... + \left( {{n^2} + n - 1} \right)$$
View Solution
Discuss Question
$${1^3} = 1 \cdot \left( {1 - 1} \right) + 1,{2^3} = \left( {2 \cdot 1 + 1} \right) + 5,{3^3} = \left( {3 \cdot 2 + 1} \right) + 9 + 11,{4^3} = \left( {4 \cdot 3 + 1} \right) + 15 + 17 + 19,{\text{e}}{\text{.t}}{\text{.c}}{\text{.}}$$
$$\therefore \,\,{n^3} = \left\{ {n \cdot \left( {n - 1} \right) + 1} \right\} + .....,$$ next term being 2 more than the previous
$$\therefore \,\,{n^3} = \left( {{n^2} - n + 1} \right) + \left( {{n^2} - n + 3} \right) + .....$$
19.
Let $$A$$ be the sum of the first 20 terms and $$B$$ be the sum of the first 40 terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + .....$$ If $$B - 2A = 100\lambda ,$$ $${\text{then }}\lambda {\text{ is equal to}}$$ :
A
248
B
464
C
496
D
232
Answer :
248
View Solution
Discuss Question
$$\eqalign{
& {\text{Here, }}B - 2A = \sum\limits_{n = 1}^{40} {{a_n} - 2\sum\limits_{n = 1}^{20} {{a_n}} = \sum\limits_{n = 21}^{40} {{a_n}} - 2\sum\limits_{n = 1}^{20} {{a_n}} } \cr
& B - 2A = \left( {{{21}^2} + {{2.22}^2} + {{23}^2} + {{2.24}^2} + ..... + {{40}^2}} \right) - \left( {{1^2} + {{2.2}^2} + {3^2} + {{2.4}^2} + ..... + {{20}^2}} \right) \cr
& = 20\left[ {22 + 2.24 + 26 + 2.28 + ..... + 60} \right] \cr
& = 20\left[ {\underbrace {\left( {22 + 24 + 26 + ..... + 60} \right)}_{20{\text{ terms}}} + \underbrace {\left( {24 + 28 + ..... + 60} \right)}_{10{\text{ terms}}}} \right] \cr
& 20\left[ {\frac{{20}}{2}\left( {22 + 60} \right) + \frac{{10}}{2}\left( {24 + 60} \right)} \right] \cr
& = 10\left[ {20.82 + 10.84} \right] \cr
& = 100\left[ {164 + 84} \right] \cr
& = 100.\left( {248} \right) \cr} $$
20.
The harmonic mean $$H$$ of two numbers is 4 and the arithmetic mean $$A$$ and geometric mean $$G$$ satisfy the equation $$2A + G^2 = 27.$$ The two numbers are
A
6, 3
B
9, 5
C
12, 7
D
3, 1
Answer :
6, 3
View Solution
Discuss Question
Let two numbers be $$a$$ and $$b.$$
Given, $$\frac{{2ab}}{{a + b}} = 4$$
$$\eqalign{
& \Rightarrow ab = 2\left( {a + b} \right) \cr
& 2A + {G^2} = 27 \cr
& \Rightarrow 2\left( {\frac{{a + b}}{2}} \right) + ab = 27 \cr
& \Rightarrow ab = 18{\text{ and }}a + b = 9 \cr
& \Rightarrow ab = 9 \cr} $$
On solving these we get
$$a = 3\,\,\&\,\, b = 6\,\,{\text{or }}a = 6\,\,\&\,\, b = 3.$$