51. Three circles of radii $$a, b, c (a < b < c)$$    touch each other externally. If they have $$x$$ - axis as a common tangent, then:

A $$\frac{1}{{\sqrt a }} = \frac{1}{{\sqrt b }} + \frac{1}{{\sqrt c }}$$
B $$\frac{1}{{\sqrt b }} = \frac{1}{{\sqrt a }} + \frac{1}{{\sqrt c }}$$
C $$a, b, c$$   are in A.P.
D $$\sqrt a ,\sqrt b ,\sqrt c {\text{ are in A}}{\text{.P}}{\text{.}}$$
Answer :   $$\frac{1}{{\sqrt a }} = \frac{1}{{\sqrt b }} + \frac{1}{{\sqrt c }}$$
Discuss Question

52. Let $$S$$ be the sum, $$P$$ be the product and $$R$$ be the sum of the reciprocals of $$n$$ terms of a G.P. Then $${P^2}{R^n}:{S^n}$$   is equal to

A $$1 : 1$$
B $${\left( {{\text{common ratio}}} \right)^n}:1$$
C $${\left( {{\text{first term}}} \right)^2}:{\left( {{\text{common ratio}}} \right)^n}$$
D none of these
Answer :   $$1 : 1$$
Discuss Question

53. The minimum value of $$\frac{{{x^4} + {y^4} + {z^2}}}{{xyz}}$$   for positive real number $$x, y, z$$  is

A $$\sqrt 2 $$
B $$2\sqrt 2 $$
C $$4\sqrt 2 $$
D $$8\sqrt 2 $$
Answer :   $$2\sqrt 2 $$
Discuss Question

54. If $$m$$ is the A.M. of two distinct real numbers $$l$$ and $$n ( l, n > 1)$$   and $${{{G}}_1}{{,}}{{{G}}_2}$$  and $${{{G}}_3}$$ are three geometric means between $$l$$ and $$n,$$ then $${{G}}_1^4 + {{2G}}_2^4{{ + }}{{G}}_3^4$$    equals:

A $$4\,lm{n^2}$$
B $$4\,{l^2}{m^2}{n^2}$$
C $$4\,{l^2}mn$$
D $$4\,l{m^2}n$$
Answer :   $$4\,l{m^2}n$$
Discuss Question

55. The value of $$\sum\limits_{n = 1}^{10} {\sum\limits_{m = 1}^{10} {\left( {{m^2} + {n^2}} \right){\text{equals}}} } $$

A 4235
B 5050
C 7700
D None of these
Answer :   7700
Discuss Question

56. Let $$a, b, c$$  be in A.P. Consider the following statements :
$$\eqalign{ & 1.\,\,\,\frac{1}{{ab}},\frac{1}{{ca}}{\text{and}}\frac{1}{{bc}}{\text{are in A}}{\text{.P}}{\text{.}} \cr & {\text{2}}{\text{.}}\,\,\,\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt c + \sqrt a }}{\text{and}}\frac{1}{{\sqrt a + \sqrt b }}{\text{are in A}}{\text{.P}}{\text{.}} \cr} $$
Which of the statements given above is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   Both 1 and 2
Discuss Question

57. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then the common ratio is

A 5
B 1
C 4
D 3
Answer :   4
Discuss Question

58. $$\frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ..... + \frac{1}{{n\left( {n + 1} \right)}}\,{\text{equals}}$$

A $$\frac{1}{{n\left( {n + 1} \right)}}$$
B $$\frac{n}{{ {n + 1} }}$$
C $$\frac{2n}{{ {n + 1}}}$$
D $$\frac{2}{{n\left( {n + 1} \right)}}$$
Answer :   $$\frac{n}{{ {n + 1} }}$$
Discuss Question

59. Concentric circles of radii $$1, 2, 3, . . . .100 \,cm$$    are drawn. The interior of the smallest circle is coloured red and the angular regions are coloured alternately green and red, so that no two adjacent regions are of the same colour. The total area of the green regions on $$sq\,cm$$  is equal to

A $$1000\,\pi $$
B $$5050\,\pi $$
C $$4950\,\pi $$
D $$5151\,\pi $$
Answer :   $$5050\,\pi $$
Discuss Question

60. If $${S_n} = \left( {1 + {3^{ - 1}}} \right)\left( {1 + {3^{ - 2}}} \right)\left( {1 + {3^{ - 4}}} \right)\left( {1 + {3^{ - 8}}} \right).....\left( {1 + {3^{ - {2^n}}}} \right),$$            then $${S_\infty }$$ is equal to

A $$1$$
B $$\frac{1}{2}$$
C $$\frac{3}{2}$$
D None of these
Answer :   $$\frac{3}{2}$$
Discuss Question


Practice More MCQ Question on Maths Section