Let us take G.P. with three terms $$\frac{a}{r},\,a,\,ar$$
Then,
$$\eqalign{
& S = \frac{a}{r} + a + ar = \frac{{a\left( {{r^2} + r + 1} \right)}}{r} \cr
& P = {a^3}, \cr
& R = \frac{r}{a} + \frac{1}{a} + \frac{1}{{ar}} = \frac{1}{a}\left( {\frac{{{r^2} + r + 1}}{r}} \right) \cr
& \frac{{{P^2}{R^3}}}{{{S^3}}} = \frac{{{a^6}.\frac{1}{{{a^3}}}{{\left( {\frac{{{r^2} + r + 1}}{r}} \right)}^3}}}{{{a^3}{{\left( {\frac{{{r^2} + r + 1}}{r}} \right)}^3}}} = 1 \cr} $$
Therefore, the ratio is $$1:1$$
53.
The minimum value of $$\frac{{{x^4} + {y^4} + {z^2}}}{{xyz}}$$ for positive real number $$x, y, z$$ is
54.
If $$m$$ is the A.M. of two distinct real numbers $$l$$ and $$n ( l, n > 1)$$ and $${{{G}}_1}{{,}}{{{G}}_2}$$ and $${{{G}}_3}$$ are three geometric means between $$l$$ and $$n,$$ then $${{G}}_1^4 + {{2G}}_2^4{{ + }}{{G}}_3^4$$ equals:
56.
Let $$a, b, c$$ be in A.P. Consider the following statements :
$$\eqalign{
& 1.\,\,\,\frac{1}{{ab}},\frac{1}{{ca}}{\text{and}}\frac{1}{{bc}}{\text{are in A}}{\text{.P}}{\text{.}} \cr
& {\text{2}}{\text{.}}\,\,\,\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt c + \sqrt a }}{\text{and}}\frac{1}{{\sqrt a + \sqrt b }}{\text{are in A}}{\text{.P}}{\text{.}} \cr} $$
Which of the statements given above is/are correct ?
$$\eqalign{
& {\text{Let, }}\frac{1}{{ab}},\frac{1}{{ca}},\frac{1}{{bc}}{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \frac{1}{{ca}} - \frac{1}{{ab}} = \frac{1}{{bc}} - \frac{1}{{ca}} \cr
& \Rightarrow \frac{1}{a}\left( {\frac{1}{c} - \frac{1}{b}} \right) = \frac{1}{c}\left( {\frac{1}{b} - \frac{1}{a}} \right) \cr
& \Rightarrow \frac{{b - c}}{{abc}} = \frac{{a - b}}{{abc}} \cr
& \Rightarrow b - c = a - b \cr
& \Rightarrow 2b = a + c \cr} $$
⇒ $$a, b, c$$ are in A.P. Which is true
$$\eqalign{
& {\text{Now, }}\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt c + \sqrt a }},\frac{1}{{\sqrt a + \sqrt b }}{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \therefore \frac{2}{{\sqrt c + \sqrt a }} = \frac{1}{{\sqrt b + \sqrt c }} + \frac{1}{{\sqrt a + \sqrt b }} \cr
& \Rightarrow 2\left( {\sqrt b + \sqrt c } \right)\left( {\sqrt a + \sqrt b } \right) = \left( {\sqrt c + \sqrt a } \right)\left( {\sqrt a + 2\sqrt b + \sqrt c } \right) \cr
& \Rightarrow 2\left( {\sqrt {ab} + b + \sqrt {ac} + \sqrt {bc} } \right) = \sqrt {ac} + 2\sqrt {bc} + c + a + 2\sqrt {ab} + \sqrt {ac} \cr
& \Rightarrow 2\sqrt {ab} + 2b + 2\sqrt {ac} + 2\sqrt {bc} = 2\sqrt {ac} + 2\sqrt {bc} + 2\sqrt {ab} + c + a \cr
& \Rightarrow 2b = a + c \cr} $$
⇒ $$a, b, c$$ are in A.P. Which is true.
Hence, both the statements are correct
57.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then the common ratio is
59.
Concentric circles of radii $$1, 2, 3, . . . .100 \,cm$$ are drawn. The interior of the smallest circle is coloured red and the angular regions are coloured alternately green and red, so that no two adjacent regions are of the same colour. The total area of the green regions on $$sq\,cm$$ is equal to