41. If $$\left( {1 - p} \right)\left( {1 + 3x + 9{x^2} + 27{x^3} + 81{x^4} + 243{x^5}} \right) = 1 - {p^6},p \ne 1$$            then the value of $$\frac{p}{x}$$ is

A $$\frac{1}{3}$$
B $$3$$
C $$\frac{1}{2}$$
D $$2$$
Answer :   $$3$$
Discuss Question

42. The sum of first 20 terms of the sequence 0.7, 0.77, 0.777, . . . . . , is

A $$\frac{7}{{81}}\left( {179 - {{10}^{ - 20}}} \right)$$
B $$\frac{7}{{9}}\left( {99 - {{10}^{ - 20}}} \right)$$
C $$\frac{7}{{81}}\left( {179 + {{10}^{ - 20}}} \right)$$
D $$\frac{7}{{9}}\left( {99 + {{10}^{ - 20}}} \right)$$
Answer :   $$\frac{7}{{81}}\left( {179 + {{10}^{ - 20}}} \right)$$
Discuss Question

43. Let $${t_n} = n \cdot \left( {n!} \right).$$   Then $$\sum\limits_{n = 1}^{15} {{t_n}} $$  is equal to

A $$15!\, - 1$$
B $$15!\, + 1$$
C $$16!\, - 1$$
D None of these
Answer :   $$16!\, - 1$$
Discuss Question

44. If $${a_1},{a_2},{a_3},.....,{a_{2n + 1}}$$     are in A.P. then $$\frac{{{a_{2n + 1}} - {a_1}}}{{{a_{2n + 1}} + {a_1}}} + \frac{{{a_{2n}} - {a_2}}}{{{a_{2n}} + {a_2}}} + ..... + \frac{{{a_{n + 2}} - {a_n}}}{{{a_{n + 2}} + {a_n}}}$$         is equal to

A $$\frac{{n\left( {n + 1} \right)}}{2}.\frac{{{a_2} - {a_1}}}{{{a_{n + 1}}}}$$
B $$\frac{{n\left( {n + 1} \right)}}{2}$$
C $$\left( {n + 1} \right)\left( {{a_2} - {a_1}} \right)$$
D none of these
Answer :   $$\frac{{n\left( {n + 1} \right)}}{2}.\frac{{{a_2} - {a_1}}}{{{a_{n + 1}}}}$$
Discuss Question

45. The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is $$216\,c{m^3}$$  and the total surface area is $$252\,c{m^2}.$$  The length of the longest edge is

A $$12\,cm$$
B $$6\,cm$$
C $$18\,cm$$
D $$3\,cm$$
Answer :   $$12\,cm$$
Discuss Question

46. $$a, b, c$$  are three positive numbers and $$ab{c^2}$$  has the greatest value $$\frac{1}{{64}}.$$ Then

A $$a = b = \frac{1}{2},c = \frac{1}{4}$$
B $$a = b = \frac{1}{4},c = \frac{1}{2}$$
C $$a = b = c = \frac{1}{3}$$
D none of these
Answer :   $$a = b = \frac{1}{4},c = \frac{1}{2}$$
Discuss Question

47. The equation $$\left( {{a^2} + {b^2}} \right){x^2} - 2b\left( {a + c} \right)x + \left( {{b^2} + {c^2}} \right) = 0$$         has equal roots. Which one of the following is correct about $$a, b$$  and $$c ?$$

A They are in A.P.
B They are in G.P.
C They are in H.P.
D They are neither in A.P., nor in G.P., nor in H.P.
Answer :   They are in G.P.
Discuss Question

48. If the coefficients of $${r^{th}},{\left( {r + 1} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$     terms in the the binomial expansion of $${\left( {1 + y} \right)^{m}}$$  are in A.P., then $$m$$ and $$r$$ satisfy the equation

A $${m^2} - m\left( {4r - 1} \right) + 4{r^2} - 2 = 0$$
B $${m^2} - m\left( {4r + 1} \right) + 4{r^2} + 2 = 0$$
C $${m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0$$
D $${m^2} - m\left( {4r - 1} \right) + 4{r^2} + 2 = 0$$
Answer :   $${m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0$$
Discuss Question

49. If $$\frac{1}{a},\frac{1}{b},\frac{1}{c}$$  are A.P., then $$\left( {\frac{1}{a} + \frac{1}{b} - \frac{1}{c}} \right)\left( {\frac{1}{b} + \frac{1}{c} - \frac{1}{a}} \right)$$      is equal to

A $$\frac{4}{{ac}} - \frac{3}{{{b^2}}}$$
B $$\frac{{{b^2} - ac}}{{{a^2}{b^2}{c^2}}}$$
C $$\frac{4}{{ac}} - \frac{1}{{{b^2}}}$$
D None of these
Answer :   $$\frac{4}{{ac}} - \frac{3}{{{b^2}}}$$
Discuss Question

50. If $${a_1},{a_2},.....,{a_n}$$   are positive real numbers whose product is a fixed number $$c,$$ then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}\,{\text{is}}$$

A $$n{\left( {2c} \right)^{\frac{1}{n}}}$$
B $$\left( {n + 1} \right){ {c} ^{\frac{1}{n}}}$$
C $${ {2nc} ^{\frac{1}{n}}}$$
D $$\left( {n + 1} \right){\left( {2c} \right)^{\frac{1}{n}}}$$
Answer :   $$n{\left( {2c} \right)^{\frac{1}{n}}}$$
Discuss Question


Practice More MCQ Question on Maths Section