41.
If $$\left( {1 - p} \right)\left( {1 + 3x + 9{x^2} + 27{x^3} + 81{x^4} + 243{x^5}} \right) = 1 - {p^6},p \ne 1$$ then the value of $$\frac{p}{x}$$ is
A
$$\frac{1}{3}$$
B
$$3$$
C
$$\frac{1}{2}$$
D
$$2$$
Answer :
$$3$$
View Solution
Discuss Question
$$\eqalign{
& \left( {1 - p} \right)\left( {1 + 3x + 9{x^2} + 27{x^3} + 81{x^4} + 243{x^5}} \right) = 1 - {p^6} \cr
& \Rightarrow \left( {1 + 3x + 9{x^2} + 27{x^3} + 81{x^4} + 243{x^5}} \right) = \frac{{1 - {p^6}}}{{1 - p}} \cr
& \Rightarrow \left( {1 + 3x + 9{x^2} + 27{x^3} + 81{x^4} + 243{x^5}} \right) = 1 + p + {p^2} + {p^3} + {p^4} + {p^5} \cr} $$
Comparing we get $$p = 3x\,\,{\text{or }}\frac{p}{x} = 3$$
42.
The sum of first 20 terms of the sequence 0.7, 0.77, 0.777, . . . . . , is
A
$$\frac{7}{{81}}\left( {179 - {{10}^{ - 20}}} \right)$$
B
$$\frac{7}{{9}}\left( {99 - {{10}^{ - 20}}} \right)$$
C
$$\frac{7}{{81}}\left( {179 + {{10}^{ - 20}}} \right)$$
D
$$\frac{7}{{9}}\left( {99 + {{10}^{ - 20}}} \right)$$
Answer :
$$\frac{7}{{81}}\left( {179 + {{10}^{ - 20}}} \right)$$
View Solution
Discuss Question
Given sequence can be written as
$$\eqalign{
& \frac{7}{{10}} + \frac{{77}}{{100}} + \frac{{777}}{{{{10}^3}}} + ..... + {\text{ up to 20 terms}} \cr
& = {\text{7}}\left[ {\frac{1}{{10}} + \frac{{11}}{{100}} + \frac{{111}}{{{{10}^3}}} + ..... + {\text{up to 20 terms}}} \right] \cr
& {\text{Multiply and divide by 9}} \cr
& = \frac{7}{9}\left[ {\frac{9}{{10}} + \frac{{99}}{{100}} + \frac{{999}}{{{{10}^3}}} + ..... + {\text{up to 20 terms}}} \right] \cr
& = \frac{7}{9}\left[ {\left( {1 - \frac{1}{{10}}} \right) + \left( {1 - \frac{1}{{{{10}^2}}}} \right) + \left( {1 - \frac{1}{{{{10}^3}}}} \right) + ..... + {\text{up to 20 terms}}} \right] \cr
& = \frac{7}{9}\left[ {20 - \frac{{\frac{1}{{10}}\left( {1 - {{\left( {\frac{1}{{10}}} \right)}^{20}}} \right)}}{{1 - \frac{1}{{10}}}}} \right] \cr
& = \frac{7}{9}\left[ {\frac{{179}}{9} + \frac{1}{9}{{\left( {\frac{1}{{10}}} \right)}^{20}}} \right] \cr
& = \frac{7}{{81}}\left[ {179 + {{\left( {10} \right)}^{ - 20}}} \right] \cr} $$
43.
Let $${t_n} = n \cdot \left( {n!} \right).$$ Then $$\sum\limits_{n = 1}^{15} {{t_n}} $$ is equal to
A
$$15!\, - 1$$
B
$$15!\, + 1$$
C
$$16!\, - 1$$
D
None of these
Answer :
$$16!\, - 1$$
View Solution
Discuss Question
$${t_n} = n\left( {n!} \right) = \left\{ {\left( {n + 1} \right) - 1} \right\}n! = \left( {n + 1} \right)!\, - n!.$$
44.
If $${a_1},{a_2},{a_3},.....,{a_{2n + 1}}$$ are in A.P. then $$\frac{{{a_{2n + 1}} - {a_1}}}{{{a_{2n + 1}} + {a_1}}} + \frac{{{a_{2n}} - {a_2}}}{{{a_{2n}} + {a_2}}} + ..... + \frac{{{a_{n + 2}} - {a_n}}}{{{a_{n + 2}} + {a_n}}}$$ is equal to
A
$$\frac{{n\left( {n + 1} \right)}}{2}.\frac{{{a_2} - {a_1}}}{{{a_{n + 1}}}}$$
B
$$\frac{{n\left( {n + 1} \right)}}{2}$$
C
$$\left( {n + 1} \right)\left( {{a_2} - {a_1}} \right)$$
D
none of these
Answer :
$$\frac{{n\left( {n + 1} \right)}}{2}.\frac{{{a_2} - {a_1}}}{{{a_{n + 1}}}}$$
View Solution
Discuss Question
Use $${a_r} = {a_1} + \left( {r - 1} \right)d,$$ where $$d = {a_2} - {a_1}.$$
45.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is $$216\,c{m^3}$$ and the total surface area is $$252\,c{m^2}.$$ The length of the longest edge is
A
$$12\,cm$$
B
$$6\,cm$$
C
$$18\,cm$$
D
$$3\,cm$$
Answer :
$$12\,cm$$
View Solution
Discuss Question
Let the edges be $$\frac{a}{r},a,ar,$$ where $$r > 1.$$
From the question, $$\frac{a}{r} \cdot a \cdot ar = 216,\,{\text{i}}{\text{.e}}{\text{., }}{a^3} = 216,\,{\text{i}}{\text{.e}}{\text{., }}a = 6\,\,{\text{and }}2\left( {\frac{a}{r} \cdot a + a \cdot ar + \frac{a}{r} \cdot ar} \right) = 252;$$
$$\eqalign{
& \therefore \,\,\frac{1}{r} + r + 1 = \frac{7}{2} \cr
& \Rightarrow \,\,r = \frac{1}{2},2. \cr
& \therefore \,\,a = 6,r = 2;\,\,{\text{so the longest side}} = ar = 12. \cr} $$
46.
$$a, b, c$$ are three positive numbers and $$ab{c^2}$$ has the greatest value $$\frac{1}{{64}}.$$ Then
A
$$a = b = \frac{1}{2},c = \frac{1}{4}$$
B
$$a = b = \frac{1}{4},c = \frac{1}{2}$$
C
$$a = b = c = \frac{1}{3}$$
D
none of these
Answer :
$$a = b = \frac{1}{4},c = \frac{1}{2}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{a + b + \frac{c}{2} + \frac{c}{2}}}{4} \geqslant \root 4 \of {a \cdot b \cdot \frac{c}{2} \cdot \frac{c}{2}} \,\,{\text{or }}\frac{{a + b + c}}{4} \geqslant \root 4 \of {\frac{{ab{c^2}}}{4}} \cr
& \therefore \,\,\frac{{{{\left( {a + b + c} \right)}^4}}}{{{4^4}}} \geqslant \frac{{ab{c^2}}}{4};\,\,{\text{or }}ab{c^2} \leqslant \frac{1}{{64}}{\left( {a + b + c} \right)^4}. \cr} $$
∴ the greatest value of $$ab{c^2} = \frac{1}{{64}}{\left( {a + b + c} \right)^4}.$$
Also for the greatest value of $$ab{c^2}$$ the numbers have to be equal, i.e., $$a = b = \frac{c}{2}.$$
Also, given the greatest value $$ = \frac{1}{{64}}.$$ So, $$a + b + c = 1.$$
47.
The equation $$\left( {{a^2} + {b^2}} \right){x^2} - 2b\left( {a + c} \right)x + \left( {{b^2} + {c^2}} \right) = 0$$ has equal roots. Which one of the following is correct about $$a, b$$ and $$c ?$$
A
They are in A.P.
B
They are in G.P.
C
They are in H.P.
D
They are neither in A.P., nor in G.P., nor in H.P.
Answer :
They are in G.P.
View Solution
Discuss Question
The given equation
$$\left( {{a^2} + {b^2}} \right){x^2} - 2b\left( {a + c} \right)x + \left( {{b^2} + {c^2}} \right) = 0$$
has equal roots, so, discriminant = 0
Hence, $$\left\{ {2b{{\left( {a + c} \right)}^2} - 4\left( {{a^2} + {b^2}} \right)\left( {{b^2} + {c^2}} \right) = 0} \right.$$
$$\eqalign{
& \Rightarrow 4{b^2}\left( {{a^2} + {c^2} + 2ca} \right) - 4\left( {{a^2}{b^2} + {a^2}{c^2} + {b^4} + {b^2}{c^2}} \right) = 0 \cr
& \Rightarrow {b^2}{a^2} + {b^2}{c^2} + 2{b^2}ca - {a^2}{b^2} - {a^2}{c^2} - {b^4} - {b^2}{c^2} = 0 \cr
& \Rightarrow 2{b^2}ca = {b^4} + {a^2}{c^2} \cr
& \Rightarrow {b^4} - 2{b^2}ca + {a^2}{c^2} = 0 \cr
& \Rightarrow {\left( {{b^2} - ac} \right)^2} = 0 \cr
& \Rightarrow {b^2} = ac \cr} $$
⇒ $$a, b, c$$ are in G.P.
48.
If the coefficients of $${r^{th}},{\left( {r + 1} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$ terms in the the binomial expansion of $${\left( {1 + y} \right)^{m}}$$ are in A.P., then $$m$$ and $$r$$ satisfy the equation
A
$${m^2} - m\left( {4r - 1} \right) + 4{r^2} - 2 = 0$$
B
$${m^2} - m\left( {4r + 1} \right) + 4{r^2} + 2 = 0$$
C
$${m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0$$
D
$${m^2} - m\left( {4r - 1} \right) + 4{r^2} + 2 = 0$$
Answer :
$${m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given,}}{{\text{ }}^m}{C_{r - 1}},{\,^m}{C_r},{\,^m}{C_{r + 1}}\,{\text{are in A}}{\text{.P}}{\text{.}} \cr
& {{\text{2}}^m}{C_r} = {\,^m}{C_{r - 1}} + {\,^m}{C_{r + 1}} \cr
& \Rightarrow 2 = \frac{{^m{C_{r - 1}}}}{{^m{C_r}}} + \frac{{^m{C_{r + 1}}}}{{^m{C_r}}} = \frac{r}{{m - r + 1}} + \frac{{m - r}}{{r + 1}} \cr
& \Rightarrow {m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0. \cr} $$
49.
If $$\frac{1}{a},\frac{1}{b},\frac{1}{c}$$ are A.P., then $$\left( {\frac{1}{a} + \frac{1}{b} - \frac{1}{c}} \right)\left( {\frac{1}{b} + \frac{1}{c} - \frac{1}{a}} \right)$$ is equal to
A
$$\frac{4}{{ac}} - \frac{3}{{{b^2}}}$$
B
$$\frac{{{b^2} - ac}}{{{a^2}{b^2}{c^2}}}$$
C
$$\frac{4}{{ac}} - \frac{1}{{{b^2}}}$$
D
None of these
Answer :
$$\frac{4}{{ac}} - \frac{3}{{{b^2}}}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{1}{a} - \frac{1}{b} = \frac{1}{b} - \frac{1}{c} \cr
& \therefore \left( {\frac{1}{a} + \frac{1}{b} - \frac{1}{c}} \right)\left( {\frac{1}{b} + \frac{1}{c} - \frac{1}{a}} \right) \cr
& = \left( {\frac{2}{a} - \frac{1}{b}} \right)\left( {\frac{2}{c} - \frac{1}{b}} \right) = \frac{4}{{ac}} - \frac{1}{b}\left( {\frac{2}{a} + \frac{2}{c}} \right) + \frac{1}{{{b^2}}} \cr
& = \frac{4}{{ac}} - \frac{2}{b}\left( {\frac{2}{b}} \right) + \frac{1}{{{b^2}}} = \frac{4}{{ac}} - \frac{3}{{{b^2}}} \cr} $$
50.
If $${a_1},{a_2},.....,{a_n}$$ are positive real numbers whose product is a fixed number $$c,$$ then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}\,{\text{is}}$$
A
$$n{\left( {2c} \right)^{\frac{1}{n}}}$$
B
$$\left( {n + 1} \right){ {c} ^{\frac{1}{n}}}$$
C
$${ {2nc} ^{\frac{1}{n}}}$$
D
$$\left( {n + 1} \right){\left( {2c} \right)^{\frac{1}{n}}}$$
Answer :
$$n{\left( {2c} \right)^{\frac{1}{n}}}$$
View Solution
Discuss Question
We have
$$\eqalign{
& \frac{{\left( {{a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}} \right)}}{n} \geqslant {\left( {{a_1}{a_2}.....{a_{n - 1}}2{a_n}} \right)^{\frac{1}{n}}} \cr
& \Rightarrow {a_1} + {a_2} + {a_3} + ..... + {a_{n - 1}} + 2{a_n} \geqslant n{\left( {2c} \right)^{\frac{1}{n}}} \cr} $$