91.
Let $$f\left( n \right) = \left[ {\frac{1}{2} + \frac{n}{{100}}} \right]$$ where $$\left[ x \right]$$ denotes the integral part of $$x.$$ Then the value of $$\sum\limits_{n = 1}^{100} {f\left( n \right)} $$ is
The given series is arithmetic whose first term $$= 20,$$ and common difference $$ = - \frac{2}{3}$$
As the common difference is negative the terms will become negative after some stage. So the sum is maximum when all positive terms are added
Now, for the positive terms
$$\eqalign{
& {x_n} \geqslant 0 \cr
& \Rightarrow 20 + \left( {n - 1} \right) \times - \frac{2}{3} \geqslant 0 \cr
& \Rightarrow 60 - 2\left( {n - 1} \right) \geqslant 0 \cr
& \Rightarrow n \leqslant 31. \cr} $$
∴ The first 31 terms are non - negative
∴ Maximum sum
$$ = {S_{31}} = \frac{{31}}{2}\left[ {2 \times 20 + \left( {31 - 1} \right) \times - \frac{2}{3}} \right] = 310$$
93.
If $$a > 0, b > 0, c > 0$$ and the minimum value of $$a\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right)$$ is $$\lambda abc$$ then $$\lambda $$ is
Use $$A \geqslant G$$ for the numbers $$a{b^2},a{c^2},b{c^2},b{a^2},c{a^2},c{b^2}.$$
94.
In the given square, a diagonal is drawn, and parallel line segments joining points on the adjacent sides are drawn on both sides of the diagonal. The length of the diagonal is $$n\sqrt 2 \,cm.$$ If the distance between consecutive line segments be $$\frac{1}{{\sqrt 2 }}\,cm$$ then the sum of the lengths of all possible line segments and the diagonal is
96.
Let the sum of the first $$n$$ terms of a non-constant A.P., $${a_1},{a_2},{a_3},......\,\,{\text{be}}\,\,50n + \frac{{n\left( {n - 7} \right)}}{2}A,$$ where $$A$$ is a constant. If $$d$$ is the common difference of this A.P., then the ordered pair $$\left( {d,{a_{50}}} \right)$$ is equal to:
97.
If $${a_n} > 1$$ for all $$n \in N$$ then $${\log _{{a_2}}}{a_1} + {\log _{{a_3}}}{a_2} + ..... + {\log _{{a_n}}}{a_{n - 1}} + {\log _{{a_1}}}{a_n}$$ has the minimum value