91. Let $$f\left( n \right) = \left[ {\frac{1}{2} + \frac{n}{{100}}} \right]$$    where $$\left[ x \right]$$ denotes the integral part of $$x.$$ Then the value of $$\sum\limits_{n = 1}^{100} {f\left( n \right)} $$  is

A $$50$$
B $$51$$
C $$1$$
D None of these
Answer :   $$51$$
Discuss Question

92. The maximum sum of the series $$20 + 19\frac{1}{3} + 18\frac{2}{3} + 18 + .....\,{\text{is}}$$

A $$300$$
B $$310$$
C $$311\frac{2}{3}$$
D $$333\frac{1}{3}$$
Answer :   $$310$$
Discuss Question

93. If $$a > 0, b > 0, c > 0$$    and the minimum value of $$a\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right)$$       is $$\lambda abc$$  then $$\lambda $$ is

A 2
B 1
C 6
D 3
Answer :   6
Discuss Question

94. In the given square, a diagonal is drawn, and parallel line segments joining points on the adjacent sides are drawn on both sides of the diagonal. The length of the diagonal is $$n\sqrt 2 \,cm.$$  If the distance between consecutive line segments be $$\frac{1}{{\sqrt 2 }}\,cm$$  then the sum of the lengths of all possible line segments and the diagonal is
Sequences and Series mcq question image

A $$n\left( {n + 1} \right)\sqrt 2 \,cm$$
B $${n^2}\,cm$$
C $$n\left( {n + 2} \right)\,cm$$
D $${n^2}\sqrt 2 \,cm$$
Answer :   $${n^2}\sqrt 2 \,cm$$
Discuss Question

95. The harmonic mean of the roots of the equation $$\left( {5 + \sqrt 2 } \right){x^2} - \left( {4 + \sqrt 5 } \right)x + 8 + 2\sqrt 5 = 0$$         is

A 2
B 4
C 6
D 8
Answer :   4
Discuss Question

96. Let the sum of the first $$n$$ terms of a non-constant A.P., $${a_1},{a_2},{a_3},......\,\,{\text{be}}\,\,50n + \frac{{n\left( {n - 7} \right)}}{2}A,$$        where $$A$$ is a constant. If $$d$$ is the common difference of this A.P., then the ordered pair $$\left( {d,{a_{50}}} \right)$$   is equal to:

A $$(50, 50 + 46A)$$
B $$(50, 50 + 45A)$$
C $$(A, 50 + 45A)$$
D $$(A, 50 + 46A)$$
Answer :   $$(A, 50 + 46A)$$
Discuss Question

97. If $${a_n} > 1$$  for all $$n \in N$$  then $${\log _{{a_2}}}{a_1} + {\log _{{a_3}}}{a_2} + ..... + {\log _{{a_n}}}{a_{n - 1}} + {\log _{{a_1}}}{a_n}$$         has the minimum value

A 1
B 2
C 0
D none of these
Answer :   1
Discuss Question

98. What is the $$15^{th}$$ term of the series $$3, 7, 13, 21, 31, 43, . . . . . \,?$$

A 205
B 225
C 238
D 241
Answer :   241
Discuss Question

99. If $$x > 0,\frac{{{x^n}}}{{1 + x + {x^2} + ..... + {x^{2n}}}}\,{\text{is}}$$

A $$ \leqslant \frac{1}{{2n + 1}}$$
B $$ < \frac{2}{{2n + 1}}$$
C $$^3\frac{1}{{2n + 1}}$$
D $$ > \frac{2}{{2n + 1}}$$
Answer :   $$ \leqslant \frac{1}{{2n + 1}}$$
Discuss Question

100. If $$4{a^2} + 9{b^2} + 16{c^2} = 2\left( {3ab + 6bc + 4ca} \right),$$        where $$a, b, c$$  are non-zero numbers, then $$a, b, c$$  are in

A A.P.
B G.P.
C H.P.
D none of these
Answer :   H.P.
Discuss Question


Practice More MCQ Question on Maths Section