71. If the co-efficients of $${r^{th}},{\left( {r + 1} \right)^{th}},\,{\text{and}}\,\,{\left( {r + 2} \right)^{th}}$$     terms in the binomial expansion of $${\left( {1 + y} \right)^m}$$  are in A.P., then $$m$$ and $$r$$ satisfy the equation

A $${m^2} - m\left( {4r - 1} \right) + 4{r^2} - 2 = 0$$
B $${m^2} - m\left( {4r + 1} \right) + 4{r^2} + 2 = 0$$
C $${m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0$$
D $${m^2} - m\left( {4r - 1} \right) + 4{r^2} + 2 = 0$$
Answer :   $${m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0$$
Discuss Question

72. The sum of infinite terms of a decreasing G.P. is equal to the greatest value of the function $$f\left( x \right) = {x^3} + 3x - 9$$     in the interval $$\left[ { - 2,3} \right]$$  and the difference between the first two terms is $$f'\left( 0 \right).$$  Then the common ratio of the G.P. is

A $$ - \frac{2}{3}$$
B $$\frac{4}{3}$$
C $$\frac{2}{3}$$
D $$ - \frac{4}{3}$$
Answer :   $$\frac{2}{3}$$
Discuss Question

73. Let $${A_n}$$ be the sum of the first $$n$$ terms of the geometric series $$704 + \frac{{704}}{2} + \frac{{704}}{4} + \frac{{704}}{8} + ....$$       and $${B_n}$$ be the sum of the first $$n$$ terms of the geometric series $$1984 - \frac{{1984}}{2} + \frac{{1984}}{4} + \frac{{1984}}{8} + ....$$       If $${A_n} = {B_n},$$   then the value of $$n$$ is (where $$n \in N$$  ).

A 4
B 5
C 6
D 7
Answer :   5
Discuss Question

74. The value of $$0.0\overline {37} $$  where $$0.0\overline {37} $$  stands for the number $$.0373737\, . . . . . ,\,$$   is :

A $$\frac{{37}}{{1000}}$$
B $$\frac{{37}}{{990}}$$
C $$\frac{{1}}{{37}}$$
D $$\frac{{1}}{{27}}$$
Answer :   $$\frac{{37}}{{990}}$$
Discuss Question

75. If $$S, P$$  and $$R$$ are the sum, product and sum of the reciprocals of $$n$$ terms of an increasing G.P. respectively and $${S^n} = {R^n}.{P^k},$$   then $$k$$ is equal to

A 1
B 2
C 3
D None of these
Answer :   2
Discuss Question

76. Sum of $$n$$ terms of series $$12 + 16 + 24 + 40 + . . . . .$$     will be

A $$2\left( {{2^n} - 1} \right) + 8n$$
B $$2\left( {{2^n} - 1} \right) + 6n$$
C $$3\left( {{2^n} - 1} \right) + 8n$$
D $$4\left( {{2^n} - 1} \right) + 8n$$
Answer :   $$4\left( {{2^n} - 1} \right) + 8n$$
Discuss Question

77. The value of $$x + y + z$$   is 15 if $$a, x, y, z, b$$   are in A.P. while the value of $$\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$   is $$\frac{5}{3}$$ if $$a, x, y, z, b$$   are in H.P. Then the value of $$a$$ and $$b$$ are

A 2 and 8
B 1 and 9
C 3 and 7
D None
Answer :   1 and 9
Discuss Question

78. If $$t_n$$ denotes the $$n^{th}$$ term of a G.P. whose common ratio is $$r,$$ then the progression whose $$n^{th}$$ term is $$\frac{1}{{t_n^2 + t_{n + 1}^2}}{\text{is}}$$

A A.P.
B G.P.
C H.P.
D None of these
Answer :   G.P.
Discuss Question

79. The sum to infinite term of the series $$1 + \frac{2}{3} + \frac{6}{{{3^2}}} + \frac{{10}}{{{3^3}}} + \frac{{14}}{{{3^4}}} + .....{\text{ is}}$$

A 3
B 4
C 6
D 2
Answer :   3
Discuss Question

80. Let $$S$$ be the sum, $$P$$ be the product and $$R$$ be the sum of the reciprocals of 3 terms of a G.P. Then $${P^2}{R^3}:{S^3}$$  is equal to

A $$1 : 1$$
B $${ {{\text{first term}}}} : 1$$
C $${\left( {{\text{first term}}} \right)^2}:{\left( {{\text{common ratio}}} \right)^2}$$
D $${\left( {{\text{common ratio}}} \right)^n}:1$$
Answer :   $$1 : 1$$
Discuss Question


Practice More MCQ Question on Maths Section