71.
If the co-efficients of $${r^{th}},{\left( {r + 1} \right)^{th}},\,{\text{and}}\,\,{\left( {r + 2} \right)^{th}}$$ terms in the binomial expansion of $${\left( {1 + y} \right)^m}$$ are in A.P., then $$m$$ and $$r$$ satisfy the equation
72.
The sum of infinite terms of a decreasing G.P. is equal to the greatest value of the function $$f\left( x \right) = {x^3} + 3x - 9$$ in the interval $$\left[ { - 2,3} \right]$$ and the difference between the first two terms is $$f'\left( 0 \right).$$ Then the common ratio of the G.P. is
Let the G.P. be $$a,ar,a{r^2},.....\left( {0 < r < 1} \right).$$ From the question, $$\frac{a}{{1 - r}} = {3^3} + 3.3 - 9$$
$$\eqalign{
& \left\{ {\because \,\,f'\left( x \right) = 3{x^2} + 3 > 0;\,{\text{so, }}f\left( x \right)\,{\text{is monotonically increasing;}}} \right. \cr
& \left. {\therefore \,\,f\left( 3 \right)\,{\text{is the greatest value in }}\left[ { - 2,3} \right].} \right\} \cr
& {\text{Also, }}f'\left( 0 \right) = 3.\,\,{\text{So, }}a - ar = 3. \cr
& {\text{Solving, }}a = 27\left( {1 - r} \right)\,{\text{and }}a\left( {1 - r} \right) = 3 \cr
& {\text{we get }}r = \frac{2}{3},\frac{4}{3}. \cr
& {\text{But }}r < 1. \cr} $$
73.
Let $${A_n}$$ be the sum of the first $$n$$ terms of the geometric series $$704 + \frac{{704}}{2} + \frac{{704}}{4} + \frac{{704}}{8} + ....$$ and $${B_n}$$ be the sum of the first $$n$$ terms of the geometric series $$1984 - \frac{{1984}}{2} + \frac{{1984}}{4} + \frac{{1984}}{8} + ....$$ If $${A_n} = {B_n},$$ then the value of $$n$$ is (where $$n \in N$$ ).
The value of $$0.0\overline {37} $$ stands for the number $$0.0373737\, . . . . . = 0.037 + 0.00037 +\, . . . . .$$
$$\eqalign{
& = \frac{{37}}{{{{10}^3}}} + \frac{{37}}{{{{10}^5}}} + ..... = \frac{{37}}{{{{10}^3}}}\left[ {1 + \frac{1}{{100}} + .....} \right] \cr
& = \frac{{37}}{{{{10}^3}}}\left[ {\frac{1}{{1 - \frac{1}{{100}}}}} \right] = \frac{{37}}{{990}} \cr} $$
75.
If $$S, P$$ and $$R$$ are the sum, product and sum of the reciprocals of $$n$$ terms of an increasing G.P. respectively and $${S^n} = {R^n}.{P^k},$$ then $$k$$ is equal to
77.
The value of $$x + y + z$$ is 15 if $$a, x, y, z, b$$ are in A.P. while the value of $$\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$ is $$\frac{5}{3}$$ if $$a, x, y, z, b$$ are in H.P. Then the value of $$a$$ and $$b$$ are
As $$x, y, z$$ are A.M. of $$a$$ and $$b$$
$$\eqalign{
& \therefore x + y + z = 3\left( {\frac{{a + b}}{2}} \right) \cr
& \therefore 15 = \frac{3}{2}\left( {a + b} \right) \cr
& \Rightarrow a + b = 10\,\,\,.....\left( 1 \right) \cr} $$
Again $$\frac{1}{x} , \frac{1}{y} , \frac{1}{z}$$ are A.M. of $$\frac{1}{a}$$ and $$\frac{1}{b}$$
$$\eqalign{
& \therefore \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3}{2}\left( {\frac{1}{a} + \frac{1}{b}} \right) \cr
& \therefore \frac{5}{3} = \frac{3}{2} \cdot \frac{{a + b}}{{ab}} \cr
& \Rightarrow \frac{{10}}{9} = \frac{{10}}{{ab}} \cr
& \Rightarrow ab = 9\,\,\,\,\,.....\left( 2 \right) \cr} $$
Solving (1) and (2), we get
$$a = 9, 1, b = 1, 9$$
78.
If $$t_n$$ denotes the $$n^{th}$$ term of a G.P. whose common ratio is $$r,$$ then the progression whose $$n^{th}$$ term is $$\frac{1}{{t_n^2 + t_{n + 1}^2}}{\text{is}}$$
If the three terms of the G.P. be $$\frac{a}{r},a\,{\text{and }}ar$$ then
$$\eqalign{
& S = \frac{a}{r} + a + ar = \frac{a}{r}\left( {1 + r + {r^2}} \right) \cr
& P = {a^3}\,{\text{and }}R = \frac{r}{a} + \frac{1}{a} + \frac{1}{{ar}} = \frac{1}{{ar}}\left( {{r^2} + r + 1} \right) \cr
& {\text{Now,}}\frac{{{P^2}{R^3}}}{{{S^3}}} = \frac{{{a^6}\frac{1}{{{a^3}{r^3}}}{{\left( {{r^2} + 2 + 1} \right)}^3}}}{{\frac{{{a^3}}}{{{r^3}}}{{\left( {{r^2} + r + 1} \right)}^3}}} = 1 \cr} $$
So, the required ratio is $$1 : 1 .$$