$${\text{AM}} \geqslant {\text{GM}}$$ for positive numbers. So, $$\frac{{{4^x} + \frac{4}{{{4^x}}}}}{2} \geqslant \sqrt {{4^x} \cdot \frac{4}{{{4^x}}}} = 2.$$
112.
If $$a, b, c$$ are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$ and $$d{x^2} + 2ex + f = 0$$ have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$ are in-
$$\eqalign{
& \because \,a,b,c{\text{ are in G}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,{b^2} = ac \cr
& {\text{Since, }}a + b + c = xb \cr
& \Rightarrow \,a + c = \left( {x - 1} \right)b \cr
& {\text{Take square on both sides, we get}} \cr
& {a^2} + {c^2} + 2ac = {\left( {x - 1} \right)^2}{b^2} \cr
& \Rightarrow \,\,{a^2} + {c^2} = {\left( {x - 1} \right)^2}ac - 2ac\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\because \,{b^2} = ac} \right] \cr
& \Rightarrow \,\,{a^2} + {c^2} = ac\left[ {{{\left( {x - 1} \right)}^2} - 2} \right] \cr
& \Rightarrow \,\,{a^2} + {c^2} = ac\left[ {{x^2} - 2x - 1} \right] \cr
& \because \,\,{a^2} + {c^2}{\text{ are positive and }}{b^2} = ac{\text{ which is also positive}}{\text{.}} \cr
& {\text{Then, }}{x^2} - 2x - 1{\text{ would be positive but for }}x = 2,{x^2} - 2x - 1{\text{ is negative}}{\text{.}} \cr
& {\text{Hence, }}x{\text{ cannot be taken as 2}}{\text{.}} \cr} $$
114.
A series is such that its every even term is $$'a'$$ times the term before it and every odd term is $$c$$ times the term before it. The sum of $$2n$$ term of the series is (the first term is unity)
Let $$b = ar$$ and $$c = ar^2 ,$$ so that $$a, b, c$$ are in G.P.
$$ \therefore a + b + c = xb$$
$$\eqalign{
& \Rightarrow a + ar + a{r^2} = x.ar \cr
& \Rightarrow {r^2} + \left( {1 - x} \right)r + 1 = 0\,\,\,\,\,.....\left( 1 \right) \cr} $$
If $$r$$ is real, then discriminant of $$\left( 1 \right) \geqslant 0$$
$$\eqalign{
& \Rightarrow {\left( {1 - x} \right)^2} - 4.1.1 \geqslant 0 \cr
& \Rightarrow {x^2} - 2x - 3 \geqslant 0 \cr
& \Rightarrow \left( {x + 1} \right)\left( {x - 3} \right) \geqslant 0 \cr
& \Rightarrow x \leqslant - 1{\text{ or }}x \geqslant 3. \cr} $$
Now for $$x = 3$$ we get $$r = 1,$$ which will make $$a = b = c$$ Also for $$x = – 1,$$ we get $$r = – 1,$$ for which $$a = c,$$ thus $$x < – 1$$ or $$x > 3$$
117.
Let $$\sum\limits_{n = 1}^n {{r^4} = f\left( n \right).} $$ Then $$\sum\limits_{r = 1}^n {{{\left( {2r - 1} \right)}^4}} $$ is equal to
A
$$f\left( {2n} \right) - 16f\left( n \right)\,{\text{for all }}n \in N$$
B
$$f\left( n \right) - 16f\left( {\frac{{n - 1}}{2}} \right)\,{\text{when }}n\,\,{\text{is odd}}$$
C
$$f\left( n \right) - 16f\left( {\frac{{n}}{2}} \right)\,{\text{when }}n\,\,{\text{is even}}$$
D
None of these
Answer :
$$f\left( {2n} \right) - 16f\left( n \right)\,{\text{for all }}n \in N$$
118.
If $${\log _{10}}2,{\log _{10}}\left( {{2^x} - 1} \right),{\log _{10}}\left( {{2^x} + 3} \right)$$ are three consecutive terms of an A.P., then which one of the following is correct ?
119.
If $$a,{a_1},{a_2},{a_3},.....,{a_{2n}},b$$ are in A.P. and $$a,{g_1},{g_2},{g_3},.....,{g_{2n}},b$$ are in G.P. and $$h$$ is the HM of $$a$$ and $$b$$ then $$\frac{{{a_1} + {a_{2n}}}}{{{g_1}{g_{2n}}}} + \frac{{{a_2} + {a_{2n - 1}}}}{{{g_2}{g_{2n - 1}}}} + ..... + \frac{{{a_n} + {a_{n + 1}}}}{{{g_n}{g_{n + 1}}}}$$ is equal to