1. If the polynomial equation $${a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ..... + {a_2}{x^2} + {a_1}x + {a_0} = 0,\,n$$           positive integer, has two different real roots $$\alpha $$ and $$\beta ,$$ then between $$\alpha $$ and $$\beta ,$$ the equation $$n{a_n}{x^{n - 1}} + \left( {n - 1} \right){a_{n - 1}}{x^{n - 2}} + ..... + {a_1} = 0$$         has :

A exactly one root
B at most one root
C at least one root
D no root
Answer :   at least one root
Discuss Question

2. If $$y = \left| {\cos \,x} \right| + \left| {\sin \,x} \right|$$     then $$\frac{{dy}}{{dx}}$$  at $$x = \frac{{2\pi }}{3}$$  is :

A $$\frac{{1 - \sqrt 3 }}{2}$$
B 0
C $$\frac{1}{2}\left( {\sqrt 3 - 1} \right)$$
D none of these
Answer :   $$\frac{1}{2}\left( {\sqrt 3 - 1} \right)$$
Discuss Question

3. Which of the following functions is not differentiable at $$x = 1\,?$$

A $$f\left( x \right) = \left( {{x^2} - 1} \right)\left| {\left( {x - 1} \right)\left( {x - 2} \right)} \right|$$
B $$f\left( x \right) = \sin \left( {\left| {x - 1} \right|} \right) - \left| {x - 1} \right|$$
C $$f\left( x \right) = \tan \left( {\left| {x - 1} \right|} \right) + \left| {x - 1} \right|$$
D none of these
Answer :   $$f\left( x \right) = \tan \left( {\left| {x - 1} \right|} \right) + \left| {x - 1} \right|$$
Discuss Question

4. If $${x^a}{y^b} = {\left( {x - y} \right)^{a + b}},$$     then the value of $$\frac{{dy}}{{dx}} - \frac{y}{x}$$   is equal to :

A $$\frac{a}{b}$$
B $$\frac{b}{a}$$
C $$1$$
D $$0$$
Answer :   $$0$$
Discuss Question

5. If $$f\left( x \right)$$  is differentiable everywhere, then which one of the following is correct ?

A $$\left| f \right|$$ is differentiable everywhere
B $${\left| f \right|^2}$$ is differentiable everywhere
C $$f\left| f \right|$$  is not differentiable at some point
D none of the above
Answer :   $$f\left| f \right|$$  is not differentiable at some point
Discuss Question

6. If $$f\left( {x + y} \right) = f\left( x \right).f\left( y \right)\forall x.y$$      and $$f\left( 5 \right) = 2,\,f'\left( 0 \right) = 3,$$     then $$f'\left( 5 \right)$$  is-

A $$0$$
B $$1$$
C $$6$$
D $$2$$
Answer :   $$6$$
Discuss Question

7. $$f\left( x \right)$$  and $$g\left( x \right)$$  are two differentiable functions on $$\left[ {0,\,2} \right]$$  such that $$f''\left( x \right) - g''\left( x \right) = 0,\,\,f'\left( 1 \right) = 2g'\left( 1 \right) = 4f\left( 2 \right) = 3g\left( 2 \right) = 9$$            then $$f\left( x \right) - g\left( x \right)$$     at $$x = \frac{3}{2}$$  is-

A $$0$$
B $$2$$
C $$10$$
D $$5$$
Answer :   $$5$$
Discuss Question

8. Let $$y = \left| {\tan \left( {\frac{\pi }{4} - x} \right)} \right|.$$    Then $$\frac{{dy}}{{dx}}$$ at $$x = \frac{\pi }{4}$$

A is 1
B is $$-1$$
C does not exist
D none of these
Answer :   does not exist
Discuss Question

9. Which of the following functions is differentiable at $$x = 0? $$

A $$\cos \,\left( {\left| x \right|} \right) + \left| x \right|$$
B $$\cos \,\left( {\left| x \right|} \right) - \left| x \right|$$
C $$\sin \,\left( {\left| x \right|} \right) + \left| x \right|$$
D $$\sin \,\left( {\left| x \right|} \right) - \left| x \right|$$
Answer :   $$\sin \,\left( {\left| x \right|} \right) - \left| x \right|$$
Discuss Question

10. If $${I_n} = \frac{{{d^n}}}{{d{x^n}}}\left( {{x^n}\log \,x} \right),$$     then $${I_n} - n\,{I_{n - 1}} = ?$$

A $$n$$
B $$n - 1$$
C $$n!$$
D $$\left( {n - 1} \right)!$$
Answer :   $$\left( {n - 1} \right)!$$
Discuss Question


Practice More MCQ Question on Maths Section