31.
The sum of $$\frac{3}{{1 \cdot 2}} \cdot \frac{1}{2} + \frac{4}{{2 \cdot 3}} \cdot {\left( {\frac{1}{2}} \right)^2} + \frac{5}{{3 \cdot 4}} \cdot {\left( {\frac{1}{2}} \right)^3} + ......\,{\text{to }}n$$ terms is equal to
A
$$1 - \frac{1}{{\left( {n + 1} \right){2^n}}}$$
B
$$1 - \frac{1}{{n \cdot {2^{n - 1}}}}$$
C
$$1 + \frac{1}{{\left( {n + 1} \right){2^n}}}$$
D
None of these
Answer :
$$1 - \frac{1}{{\left( {n + 1} \right){2^n}}}$$
View Solution
Discuss Question
$${t_n} = \frac{{n + 2}}{{n\left( {n + 1} \right)}} \cdot {\left( {\frac{1}{2}} \right)^n} = \frac{{2\left( {n + 1} \right) - n}}{{n\left( {n + 1} \right)}} \cdot {\left( {\frac{1}{2}} \right)^n} = \frac{1}{n} \cdot {\left( {\frac{1}{2}} \right)^{n - 1}} - \frac{1}{{n + 1}} \cdot {\left( {\frac{1}{2}} \right)^n}.$$
32.
The sum of the first $$n$$ terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + ....{\text{ is }}\frac{{n{{\left( {n + 1} \right)}^2}}}{2}$$ when $$n$$ is even. When $$n$$ is odd the sum is
A
$${\left[ {\frac{{n\left( {n + 1} \right)}}{2}} \right]^2}$$
B
$$\frac{{{n^2}\left( {n + 1} \right)}}{2}$$
C
$$\frac{{n{{\left( {n + 1} \right)}^2}}}{4}$$
D
$$\frac{{3n\left( {n + 1} \right)}}{2}$$
Answer :
$$\frac{{{n^2}\left( {n + 1} \right)}}{2}$$
View Solution
Discuss Question
If $$n$$ is odd, the required sum is
$$\eqalign{
& {1^2} + {2.2^2} + {3^2} + {2.4^2} + ...... + 2.{\left( {n + 1} \right)^2} + {n^2} \cr
& = \frac{{\left( {n - 1} \right){{\left( {n - 1 + 1} \right)}^2}}}{2} + {n^2} \cr
& \left[ {\because \left( {n - 1} \right){\text{ is even}}} \right. \cr
& \therefore {\text{ using given formula for the sum of }}\left( {n - 1} \right)\left. {{\text{terms}}{\text{.}}} \right] \cr
& = \left( {\frac{{n - 1}}{2} + 1} \right){n^2} \cr
& = \frac{{{n^2}\left( {n + 1} \right)}}{2} \cr} $$
33.
If $$\left( {2n + r} \right)r,n \in N,r \in N$$ is expressed as the sum of $$k$$ consecutive odd natural numbers then $$k$$ is equal to
A
$$r$$
B
$$n$$
C
$$r + 1$$
D
$$n + 1$$
Answer :
$$r$$
View Solution
Discuss Question
$$\left( {2n + r} \right)r = {\left( {n + r} \right)^2} - {n^2} = \left\{ {1 + 3 + 5 + .....\,{\text{to }}\left( {n + r} \right){\text{terms}}} \right\} - \left\{ {1 + 3 + 5 + .....\,{\text{to }}n\,\,{\text{terms}}} \right\}.$$
34.
If $${\log _{10}}2,{\log _{10}}\left( {{2^x} - 1} \right)$$ and $${\log _{10}}\left( {{2^x} + 3} \right)$$ are three consecutive terms of an A.P, then the value of $$x$$ is
A
$$1$$
B
$${\log _{5}}2$$
C
$${\log _{2}}5$$
D
$${\log _{10}}5$$
Answer :
$${\log _{2}}5$$
View Solution
Discuss Question
$${\log _{10}}2,{\log _{10}}\left( {{2^x} - 1} \right){\text{ and }}{\log _{10}}\left( {{2^x} + 3} \right){\text{ are in A}}{\text{.P}}{\text{.}}$$
Hence, common difference will be same.
$$\eqalign{
& \therefore {\text{lo}}{{\text{g}}_{10}}\left( {{2^x} - 1} \right) - {\log _{10}}2 \cr
& = \log \left( {{2^x} + 3} \right) - {\log _{10}}\left( {{2^x} - 1} \right) \cr
& \therefore {\log _{10}}\left( {\frac{{{2^x} - 1}}{2}} \right) = {\log _{10}}\left( {\frac{{{2^x} + 3}}{{{2^x} - 1}}} \right) \cr
& \Rightarrow \frac{{{2^x} - 1}}{2} = \frac{{{2^x} + 3}}{{{2^x} - 1}} \cr
& \Rightarrow {\left( {{2^x} - 1} \right)^2} = 2\left( {{2^x} + 3} \right) \cr
& \Rightarrow {2^{2x}} - {2^{x + 1}} + 1 = {2^{x + 1}} + 6 \cr
& \Rightarrow {2^{2x}} - {2^{x + 2}} = 5 \cr
& {\text{Let }}{2^x} = y,{\text{ then}} \cr
& {y^2} - 4y - 5 = 0 \cr
& \Rightarrow {y^2} - 5y + y - 5 = 0 \cr
& \Rightarrow y\left( {y - 5} \right) + 1\left( {y - 5} \right) = 0 \cr
& y = - 1,y = 5 \cr
& {\text{Therefore, }}{2^x} = 5 \cr
& x = {\log _2}5. \cr} $$
35.
If $$a, b, c, d$$ and $$p$$ are distinct real numbers such that $$\left( {{a^2} + {b^2} + {c^2}} \right){p^2} - 2\left( {ab + bc + cd} \right)p + \left( {{b^2} + {c^2} + {d^2}} \right) \leqslant 0$$ then $$a, b, c, d$$ are in
A
A.P.
B
G.P.
C
H.P.
D
None of these
Answer :
G.P.
View Solution
Discuss Question
$$\eqalign{
& {\left( {ap - b} \right)^2} + {\left( {bp - c} \right)^2} + {\left( {cp - d} \right)^2} \leqslant 0 \cr
& \Rightarrow \,\,ap - b = 0,bp - c = 0,cp - d = 0 \cr
& \therefore \,\,p = \frac{b}{a} = \frac{c}{b} = \frac{d}{c}. \cr} $$
36.
$$ABCD$$ is a square of length $$a,a \in N,a > 1.$$ Let $${L_1},{L_2},{L_3},.....$$ be points on $$BC$$ such that $$B{L_1} = {L_1}{L_2} = {L_2}{L_3} = ..... = 1$$ and $${M_1},{M_2},{M_3},.....$$ be point on $$CD$$ such that $$C{M_1} = {M_1}{M_2} = {M_2}{M_3} = ..... = 1.$$ Then $$\sum\limits_{n = 1}^{a - 1} {\left( {AL_n^2 + {L_n}M_n^2} \right)} $$ is equal to
A
$$\frac{1}{2}a{\left( {a - 1} \right)^2}$$
B
$$\frac{1}{2}a\left( {a - 1} \right)\left( {4a - 1} \right)$$
C
$$\frac{1}{2}\left( {a - 1} \right)\left( {2a - 1} \right)\left( {4a - 1} \right)$$
D
None of these
Answer :
$$\frac{1}{2}a\left( {a - 1} \right)\left( {4a - 1} \right)$$
View Solution
Discuss Question
$$\eqalign{
& AL_1^2 + {L_1}M_1^2 = \left( {{a^2} + {1^2}} \right) + \left\{ {{{\left( {a - 1} \right)}^2} + {1^2}} \right\} \cr
& AL_2^2 + {L_2}M_2^2 = \left( {{a^2} + {2^2}} \right) + \left\{ {{{\left( {a - 2} \right)}^2} + {2^2}} \right\} \cr
& ........................................................ \cr
& AL_{a - 1}^2 + {L_{a - 1}}M_{a - 1}^2 = {a^2} + {\left( {a - 1} \right)^2} + \left\{ {{1^2} + {{\left( {a - 1} \right)}^2}} \right\}. \cr} $$
∴ the required sum
$$\eqalign{
& = \left( {a - 1} \right){a^2} + \left\{ {{1^2} + {2^2} + ..... + {{\left( {a - 1} \right)}^2}} \right\} + 2\left\{ {{1^2} + {2^2} + ..... + {{\left( {a - 1} \right)}^2}} \right\} \cr
& = \left( {a - 1} \right){a^2} + 3 \cdot \frac{{\left( {a - 1} \right)a\left( {2a - 1} \right)}}{6} = a\left( {a - 1} \right)\left\{ {a + \frac{{2a - 1}}{2}} \right\}. \cr} $$
37.
Fifth term of a G.P. is 2, then the product of its 9 terms is
A
256
B
512
C
1024
D
none of these
Answer :
512
View Solution
Discuss Question
$$\eqalign{
& a{r^4} = 2 \cr
& a \times ar \times a{r^2} \times a{r^3} \times a{r^4} \times a{r^5} \times a{r^6} \times a{r^7} \times a{r^8} \cr
& = {a^9}{r^{36}} = {\left( {a{r^4}} \right)^9} = {2^9} = 512 \cr} $$
38.
If $$a, b$$ and $$c$$ are in A.P., and $$p$$ and $$p'$$ are, respectively, A.M. and G.M. between $$a$$ and $$b$$ while $$q, q'$$ are, respectively, the A,M. and G. M. between $$b$$ and $$c$$ then
A
$${p^2} + {q^2} = p{'^2} + q{'^2}$$
B
$$pq = p'q'$$
C
$${p^2} - {q^2} = p{'^2} - q{'^2}$$
D
None of these
Answer :
$${p^2} - {q^2} = p{'^2} - q{'^2}$$
View Solution
Discuss Question
$$\eqalign{
& 2b = a + c;\,\,a,p,b,q,c\,\,{\text{are in A}}{\text{.P.}} \cr
& {\text{Hence, }}p = \frac{{a + b}}{2}{\text{ and }}q = \frac{{b + c}}{2} \cr
& {\text{Again, }}a,p',b,q'{\text{ and }}c = \,{\text{are in G}}{\text{.P.}} \cr
& {\text{Hence, }}p' = \sqrt {ab} \,\,{\text{and }}q' = \sqrt {bc} \cr
& {p^2} - {q^2} = \frac{{\left( {a - c} \right)\left( {a + c + 2b} \right)}}{4} \cr
& = \frac{{\left( {a - c} \right)\left( {2b + 2b} \right)}}{4}\,\,\,\left[ {\because a + c = 2b} \right] \cr
& = \left( {a - c} \right)b = ab - bc = p{'^2} - q{'^2} \cr} $$
39.
If $$x, y, z$$ are three real numbers of the same sign then the value of $$\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$ lies in the interval
A
$$\left[ {2, + \infty } \right)$$
B
$$\left[ {3, + \infty } \right)$$
C
$$\left( {3, + \infty } \right)$$
D
$$\left( { - \infty ,3} \right)$$
Answer :
$$\left[ {3, + \infty } \right)$$
View Solution
Discuss Question
$$\frac{x}{y},$$ e.t.c., are positive. $$A \geqslant G$$
$$ \Rightarrow \,\,\frac{{\frac{x}{y} + \frac{y}{z} + \frac{z}{x}}}{3} \geqslant \root 3 \of {\frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{x}} = 1.$$
40.
If $$0 < x < \frac{\pi }{2}$$ then the minimum value of $${\left( {\sin x + \cos x + {\text{cosec}}\,2x} \right)^3}$$ is
A
27
B
13.5
C
6.75
D
none of these
Answer :
13.5
View Solution
Discuss Question
$$\frac{{\sin x + \cos x + {\text{cosec}}2x}}{3} \geqslant \root 3 \of {\sin x \cdot \cos x \cdot {\text{cosec}}2x} = \root 3 \of {\frac{1}{2}} .$$