111. The minimum value of $${4^x} + {4^{1 - x}},x \in R,$$    is

A 2
B 4
C 1
D none of these
Answer :   4
Discuss Question

112. If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A A.P.
B G.P.
C H.P.
D none of these
Answer :   A.P.
Discuss Question

113. If $$a, b$$  and $$c$$ be three distinct real numbers in GP. and $$a + b + c = xb,$$    then $$x$$ cannot be:

A $$- 2$$
B $$- 3$$
C $$4$$
D $$2$$
Answer :   $$2$$
Discuss Question

114. A series is such that its every even term is $$'a'$$ times the term before it and every odd term is $$c$$ times the term before it. The sum of $$2n$$ term of the series is (the first term is unity)

A $$\frac{{\left( {1 - {c^n}} \right)\left( {1 - {a^n}} \right)}}{{1 - ac}}$$
B $$\frac{{\left( {1 + a} \right)\left( {1 - {c^n}{a^n}} \right)}}{{1 - ac}}$$
C $$\frac{{\left( {1 + {c^n}} \right)\left( {1 + {a^n}} \right)}}{{1 - ac}}$$
D $$\frac{{\left( {1 + a} \right)\left( {1 + {c^n}{a^n}} \right)}}{{1 + ac}}$$
Answer :   $$\frac{{\left( {1 + a} \right)\left( {1 - {c^n}{a^n}} \right)}}{{1 - ac}}$$
Discuss Question

115. If $$\left| r \right| > 1$$  and $$x = a + \frac{a}{r} + \frac{a}{{{r^2}}} + ....\,{\text{to }}\infty ,$$      $$y = b - \frac{b}{r} + \frac{b}{{{r^2}}} - ....\,{\text{to }}\infty ,$$      and $$z = c + \frac{c}{r^2} + \frac{c}{{{r^4}}} + ....\,{\text{to }}\infty ,$$      then $$\frac{{xy}}{z} = $$

A $$\frac{{ab}}{c}$$
B $$\frac{{ac}}{b}$$
C $$\frac{{bc}}{a}$$
D $$1$$
Answer :   $$\frac{{ab}}{c}$$
Discuss Question

116. $$a, b, c$$  are three distinct real numbers and they are in a G.P. if $$a + b + c = xb,$$   then

A $$x \leqslant - 1{\text{ or }}x \geqslant 3$$
B $$x < - 1{\text{ or }}x > 3$$
C $$x \leqslant - 1{\text{ or }}x > 3$$
D $$x < - 3{\text{ or }}x > 2$$
Answer :   $$x < - 1{\text{ or }}x > 3$$
Discuss Question

117. Let $$\sum\limits_{n = 1}^n {{r^4} = f\left( n \right).} $$   Then $$\sum\limits_{r = 1}^n {{{\left( {2r - 1} \right)}^4}} $$   is equal to

A $$f\left( {2n} \right) - 16f\left( n \right)\,{\text{for all }}n \in N$$
B $$f\left( n \right) - 16f\left( {\frac{{n - 1}}{2}} \right)\,{\text{when }}n\,\,{\text{is odd}}$$
C $$f\left( n \right) - 16f\left( {\frac{{n}}{2}} \right)\,{\text{when }}n\,\,{\text{is even}}$$
D None of these
Answer :   $$f\left( {2n} \right) - 16f\left( n \right)\,{\text{for all }}n \in N$$
Discuss Question

118. If $${\log _{10}}2,{\log _{10}}\left( {{2^x} - 1} \right),{\log _{10}}\left( {{2^x} + 3} \right)$$       are three consecutive terms of an A.P., then which one of the following is correct ?

A $$x = 0$$
B $$x = 1$$
C $$x = {\log _2}5$$
D $$x = {\log _5}2$$
Answer :   $$x = {\log _2}5$$
Discuss Question

119. If $$a,{a_1},{a_2},{a_3},.....,{a_{2n}},b$$     are in A.P. and $$a,{g_1},{g_2},{g_3},.....,{g_{2n}},b$$     are in G.P. and $$h$$ is the HM of $$a$$ and $$b$$ then $$\frac{{{a_1} + {a_{2n}}}}{{{g_1}{g_{2n}}}} + \frac{{{a_2} + {a_{2n - 1}}}}{{{g_2}{g_{2n - 1}}}} + ..... + \frac{{{a_n} + {a_{n + 1}}}}{{{g_n}{g_{n + 1}}}}$$         is equal to

A $$\frac{{2n}}{h}$$
B $$2nh$$
C $$nh$$
D $$\frac{{n}}{h}$$
Answer :   $$\frac{{2n}}{h}$$
Discuss Question

120. The least value of $$2{\log _{100}}a - {\log _a}0.0001,a > 1$$      is

A 2
B 3
C 4
D none of these
Answer :   4
Discuss Question


Practice More MCQ Question on Maths Section