171. The product of $$n$$ positive numbers is 1. Their sum is

A a positive integer
B divisible by $$n$$
C equal to $$n + \frac{1}{n}$$
D greater than or equal to $$n$$
Answer :   greater than or equal to $$n$$
Discuss Question

172. If the first and the $${\left( {2n - 1} \right)^{th}}$$  terms of an AP, a GP and an HP are equal and their $$n^{th}$$ terms are $$a, b$$  and $$c$$ respectively then

A $$a = b = c$$
B $$a \geqslant b \geqslant c$$
C $$a + c = b$$
D $$ac - {b^2} = 0$$
Answer :   $$ac - {b^2} = 0$$
Discuss Question

173. The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A $$\frac{{2355}}{{1001}}$$
B $$\frac{{2379}}{{997}}$$
C $$\frac{{2355}}{{999}}$$
D none of these
Answer :   $$\frac{{2355}}{{999}}$$
Discuss Question

174. If $${\log _e}5,{\log _e}\left( {{5^x} - 1} \right){\text{and }}{\log _e}\left( {{5^x} - \frac{{11}}{5}} \right)$$       are in A.P. then the values of $$x$$ are

A $${\log _5}4{\text{ and}}\,\,{\log _5}3$$
B $${\log _3}4{\text{ and}}\,\,{\log _4}3$$
C $${\log _3}4{\text{ and}}\,\,{\log _3}5$$
D $${\log _5}6{\text{ and}}\,\,{\log _5}7$$
Answer :   $${\log _5}4{\text{ and}}\,\,{\log _5}3$$
Discuss Question

175. In the sum of first $$n$$ terms of an A.P. is $$c{n^2}$$, then the sum of squares of these $$n$$ terms is

A $$\frac{{n\left( {4{n^2} - 1} \right){c^2}}}{6}$$
B $$\frac{{n\left( {4{n^2} + 1} \right){c^2}}}{3}$$
C $$\frac{{n\left( {4{n^2} - 1} \right){c^2}}}{3}$$
D $$\frac{{n\left( {4{n^2} + 1} \right){c^2}}}{6}$$
Answer :   $$\frac{{n\left( {4{n^2} - 1} \right){c^2}}}{3}$$
Discuss Question

176. If $$a, b, c$$  are positive numbers, then least value of $$\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right)$$     is

A 1
B 6
C 9
D None
Answer :   9
Discuss Question

177. Suppose $$a, b, c$$   are in A.P. and $${a^2},{b^2},{c^2}$$   are in G.P. If $$a < b < c$$   and $$a + b + c = \frac{3}{2},$$   then the value of $$a$$ is

A $$\frac{1}{{2\sqrt 2 }}$$
B $$\frac{1}{{2\sqrt 3 }}$$
C $$\frac{1}{2} - \frac{1}{{\sqrt 3 }}$$
D $$\frac{1}{2} - \frac{1}{{\sqrt 2 }}$$
Answer :   $$\frac{1}{2} - \frac{1}{{\sqrt 2 }}$$
Discuss Question

178. The sum of $$i - 2 - 3i + 4....\,{\text{upto }}100\,{\text{terms,}}$$       where $$i = \sqrt { - 1} $$   is

A $$50\left( {1 - i} \right)$$
B $$25i$$
C $$25\left( {1 + i} \right)$$
D $$100\left( {1 - i} \right)$$
Answer :   $$50\left( {1 - i} \right)$$
Discuss Question

179. The sum of the products of the ten numbers $$ \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$$     taking two at a time is

A $$165$$
B $$- 55$$
C $$55$$
D none of these
Answer :   $$- 55$$
Discuss Question

180. If, for a positive integer $$n,$$ the quadratic equation, $$x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + ..... + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$$             has two consecutive integral solutions, then $$n$$ is equal to:

A 11
B 12
C 9
D 10
Answer :   11
Discuss Question


Practice More MCQ Question on Maths Section