161. The sum to $$n$$ terms of the series $$2 + 5 +14 + 41 + . . . . .\,$$     is

A $${3^{n - 1}} + 8n - 3$$
B $${8.3^{n}} + 4n - 8$$
C $${3^{n + 1}} + \frac{8}{3}n + 1$$
D None of these
Answer :   None of these
Discuss Question

162. The number $${\log _2}$$ $$7$$ is

A an integer
B a rational number
C an irrational number
D a prime number
Answer :   an irrational number
Discuss Question

163. $$a, b, c$$  are in G.P. with $$1 < a < b < n,$$    and $$n > 1$$  is an integer. $${\log _a}n,{\log _b}n,{\log _c}n$$    form a sequence. This sequence is which one of the following ?

A Harmonic progression
B Arithmetic progression
C Geometric progression
D None of these
Answer :   Harmonic progression
Discuss Question

164. If $${x^{\ln \left( {\frac{y}{z}} \right)}} \cdot {y^{\ln{{\left( {xz} \right)}^2}}} \cdot {z^{\ln\left( {\frac{x}{y}} \right)}} = {y^{4\,\ln\,y}}$$       for any $$x > 1, y > 1$$   and $$z > 1,$$  then which one of the following is correct?

A $$\ln\,y$$  is the GM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$
B $$\ln\,y$$  is the AM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$
C $$\ln\,y$$  is the HM of $$\ln\,x, \ln\,x$$  and $$\ln\,z$$
D $$\ln\,y$$  is the AM of $$\ln, \ln\,x, \ln\,z$$   and $$\ln\,z$$
Answer :   $$\ln\,y$$  is the AM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$
Discuss Question

165. The sum of series $$\frac{1}{{2!}} + \frac{1}{{4!}} + \frac{1}{{6!}} + ......{\text{ is}}$$

A $$\frac{{\left( {{e^2} - 2} \right)}}{e}$$
B $$\frac{{{{\left( {e - 1} \right)}^2}}}{{2e}}$$
C $$\frac{{\left( {{e^2} - 1} \right)}}{{2e}}$$
D $$\frac{{\left( {{e^2} - 1} \right)}}{2}$$
Answer :   $$\frac{{{{\left( {e - 1} \right)}^2}}}{{2e}}$$
Discuss Question

166. In the value of $$100\, !$$  the number of zeros at the end is

A 11
B 22
C 23
D 24
Answer :   24
Discuss Question

167. $${2^{\frac{1}{4}}} \cdot {4^{\frac{1}{8}}} \cdot {8^{\frac{1}{{16}}}} \cdot .....\,{\text{to }}\infty $$     is equal to

A $$1$$
B $$2$$
C $$\frac{3}{2}$$
D none of these
Answer :   $$1$$
Discuss Question

168. If $${a_r} > 0,r \in N$$   and $${a_1},{a_2},{a_3},.....,{a_{2n}}$$    are in A.P. then $$\frac{{{a_1} + {a_{2n}}}}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{{{a_2} + {a_{2n - 1}}}}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + \frac{{{a_3} + {a_{2n - 2}}}}{{\sqrt {{a_3}} + \sqrt {{a_4}} }} + ..... + \frac{{{a_n} + {a_{n + 1}}}}{{\sqrt {{a_n}} + \sqrt {{a_{n + 1}}} }}$$             is equal to

A $$n - 1$$
B $$\frac{{n\left( {{a_1} + {a_{2n}}} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$
C $$\frac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$
D none of these
Answer :   $$\frac{{n\left( {{a_1} + {a_{2n}}} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$
Discuss Question

169. There are four numbers of which the first three are in G.P. and the last three are in A.P., whose common difference is 6. If the first and the last numbers are equal then two other numbers are

A $$- 2, 4$$
B $$- 4, 2$$
C $$2, 6$$
D None
Answer :   $$- 4, 2$$
Discuss Question

170. If the sum of the first ten terms of the series $${\left( {1\frac{3}{5}} \right)^2} + {\left( {2\frac{2}{5}} \right)^2} + {\left( {3\frac{1}{5}} \right)^2} + {4^2} + {\left( {4\frac{4}{5}} \right)^2} + .....,{\text{ is }}\frac{{16}}{5}m,$$            then $$m$$ is equal to:

A 100
B 99
C 102
D 101
Answer :   101
Discuss Question


Practice More MCQ Question on Maths Section