181. Consider an infinite geometric series with first term $$a$$ and common ratio $$r$$ . If its sum is 4 and the second term is $$\frac{3}{4}$$ , then

A $$a = \frac{4}{7},r = \frac{3}{7}$$
B $$a = 2,r = \frac{3}{8}$$
C $$a = \frac{3}{2},r = \frac{1}{2}$$
D $$a = 3,r = \frac{1}{4}$$
Answer :   $$a = 3,r = \frac{1}{4}$$
Discuss Question

182. The sum of 0.2 + 0.004 + 0.00006 + 0.0000008 + . . . . . to $$\infty $$ is

A $$\frac{{200}}{{891}}$$
B $$\frac{{2000}}{{9801}}$$
C $$\frac{{1000}}{{9801}}$$
D None of these
Answer :   $$\frac{{2000}}{{9801}}$$
Discuss Question

183. The sum to $$n$$ terms of the series $$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + .....\,{\text{is}}$$

A $$n - 1 - {2^{ - n}}$$
B $$1$$
C $$n - 1 + {2^{ - n}}$$
D $$ 1 + {2^{ - n}}$$
Answer :   $$n - 1 + {2^{ - n}}$$
Discuss Question

184. If $${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $$   and $${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $$   , then $$\frac{{{t_n}}}{{{S_n}}}$$ is equal to

A $$\frac{{2n - 1}}{2}$$
B $$\frac{1}{2}n - 1$$
C $$n - 1$$
D $$\frac{1}{2}n$$
Answer :   $$\frac{1}{2}n$$
Discuss Question

185. $$l, m, n$$   are the $${p^{th}},{q^{th}}{\text{ and }}{r^{th}}$$   term of a G.P. all positive, then \[\left| \begin{array}{l} \log l\,\,\,\,\,\,p\,\,\,\,\,\,1\\ \log m\,\,\,\,q\,\,\,\,\,\,1\\ \log n\,\,\,\,\,\,r\,\,\,\,\,\,1 \end{array} \right|\]    equals

A $$ - 1$$
B $$2$$
C $$1$$
D $$0$$
Answer :   $$0$$
Discuss Question

186. In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of its progression is equals

A $$\sqrt 5 $$
B $$\frac{1}{2}\left( {\sqrt 5 - 1} \right)$$
C $$\frac{1}{2}\left( {1 - \sqrt 5 } \right)$$
D $$\frac{1}{2}\sqrt 5 $$
Answer :   $$\frac{1}{2}\left( {\sqrt 5 - 1} \right)$$
Discuss Question

187. The co-efficient of $${x^{15}}$$ in the product $$\left( {1 - x} \right)\left( {1 - 2x} \right)\left( {1 - {2^2} \cdot x} \right)\left( {1 - {2^3} \cdot x} \right).....\left( {1 - {2^{15}} \cdot x} \right)$$           is equal to

A $${2^{105}} - {2^{121}}$$
B $${2^{121}} - {2^{105}}$$
C $${2^{120}} - {2^{104}}$$
D none of these
Answer :   $${2^{105}} - {2^{121}}$$
Discuss Question

188. If $$a = 1 + \left( {\sqrt 3 - 1} \right) + {\left( {\sqrt 3 - 1} \right)^2} + {\left( {\sqrt 3 - 1} \right)^3} + ....$$         and $$ab = 1,$$  then $$a$$ and $$b$$ are the roots of the equation

A $${x^2} + 4x - 1 = 0$$
B $${x^2} - 4x - 1 = 0$$
C $${x^2} + 4x + 1 = 0$$
D $${x^2} - 4x + 1 = 0$$
Answer :   $${x^2} - 4x + 1 = 0$$
Discuss Question

189. If $$a,{a_1},{a_2},{a_3},.....,{a_{2n - 1}},b$$      are in A.P., $$a,{b_1},{b_2},{b_3},.....,{b_{2n - 1}},b$$      are in G.P. and $$a,{c_1},{c_2},{c_3},.....,{c_{2n - 1}},b$$      are in H.P., where $$a, b$$  are positive, then the equation $${a_n}{x^2} - {b_n}x + {c_n} = 0$$     has its roots

A real and unequal
B real and equal
C imaginary
D none of these
Answer :   imaginary
Discuss Question

190. A person is to count 4500 currency notes. Let $${a_n}$$ denote the number of notes he counts in the $${n^{th}}$$ minute. If $${a_1} = {a_2} = .... = {a_{10}} = 150{\text{ and }}{a_{10}},{a_{11}},....$$         are in an A.P. with common difference $$- 2$$ , then the time taken by him to count all notes is

A 34 minutes
B 125 minutes
C 135 minutes
D 24 minutes
Answer :   34 minutes
Discuss Question


Practice More MCQ Question on Maths Section