101.
The sum of $$n$$ terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + .....\,{\text{is }}\frac{{n{{\left( {n + 1} \right)}^2}}}{2}$$ when $$n$$ is even. When $$n$$ is odd, the sum is
Let the required three numbers of G.P. be $$\frac{a}{r},a{\text{ and }}ar.$$
Then, their sum $$ = \frac{a}{r} + a + ar = 38$$
$$\eqalign{
& \Rightarrow a\left( {\frac{{1 + r + {r^2}}}{r}} \right) = 38\,\,\,\,\,.....\left( {\text{i}} \right) \cr
& {\text{product}} = \frac{a}{r} \times a \times ar = 1728 \cr
& \Rightarrow {a^3} = {\left( {12} \right)^3} \cr
& \therefore a = 12\,\,\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Substitute the value of $$a,$$ in equation (i), we get
$$\eqalign{
& \therefore 12 \times \left( {\frac{{1 + r + {r^2}}}{r}} \right) = 38 \cr
& \Rightarrow 6 + 6r + 6{r^2} = 19r \cr
& \Rightarrow 6{r^2} - 13r + 6 = 0 \cr
& \Rightarrow \left( {3r - 2} \right)\left( {2r - 3} \right) = 0 \cr
& \therefore r = \frac{2}{3}{\text{ or }}\frac{3}{2} \cr} $$
Hence, the required numbers are 18, 12, 8 or 8, 12, 18
∴ Greatest number = 18
105.
$${A_r};r = 1,2,3,.....,n$$ are $$n$$ points on the parabola $${y^2} = 4x$$ in the first quadrant. If $${A_r} = \left( {{x_r},{y_r}} \right),$$ where $${x_1},{x_2},{x_3},.....,{x_n}$$ are in G.P. and $${x_1} = 1,{x_2} = 2,$$ they $${y_n}$$ is equal to
$$y = 2\sqrt x ,$$ being in the first quadrant
The sequence of $$x$$-coordinates: 1, 2, 4, 8, . . . . .
∴ the sequence of $$y$$-coordinates $$2,2\sqrt 2 ,2\sqrt 4 ,2\sqrt 8 ,.....,$$ where the common ratio is $$\sqrt 2 .$$
$$\therefore \,\,{y_n} = 2 \cdot {\left( {\sqrt 2 } \right)^{n - 1}}.$$
106.
It is given that $$\frac{1}{{{2^n}\sin \alpha }},1,{2^n}\sin \alpha$$ are in A.P. for some value of $$\alpha .$$ Let say for $$n = 1,$$ the $$\alpha $$ satisfying the above A.P. is $${\alpha _1},$$ for $$n = 2,$$ the value is $${\alpha _2}$$ and so on. If $$S = \sum\limits_{i = 1}^\infty {\sin {\alpha _i}} ,$$ then the value of $$S$$ is
Given, $$a, b, c, d$$ are in A.P.
$$\eqalign{
& \Rightarrow \frac{1}{a},\frac{1}{b},\frac{1}{c},\frac{1}{d}{\text{are in H}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \frac{1}{d},\frac{1}{c},\frac{1}{b},\frac{1}{a}{\text{are also in H}}{\text{.P}}{\text{.}} \cr} $$
Now, multiply each term by $$abcd.$$
$$\frac{{abcd}}{d},\frac{{abcd}}{c},\frac{{abcd}}{b},\frac{{abcd}}{a}$$
$$abc, abd, acd, bcd$$ are in H.P.
109.
The number of terms common between the series 1 + 2 + 4 + 8 + . . . . . to 100 terms and 1 + 4 + 7 + 10 + . . . . . to 100 terms is
For G.P., $${t_n} = {2^{n - 1}};$$ for A.P., $${T_m} = 1 + \left( {m - 1} \right)3.$$ They are common if $${2^{n - 1}} = 3m - 2\,\,{\text{or, }}{{\text{2}}^{n - 2}} + 1 = \frac{{3m}}{2} \leqslant 150$$
$$ \Rightarrow \,\,n \leqslant 9,m \leqslant 100.$$
By trial, $$n = 1, m = 1; n = 3, m = 2; n = 5, m = 6; n = 7, m = 22; n = 9, m = 86.$$
110.
If $${a^2},{b^2},{c^2}$$ are in A.P. consider two statements
$$\eqalign{
& \left( {\text{i}} \right)\frac{1}{{b + c}},\frac{1}{{c + a}},\frac{1}{{a + b}}\,{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \left( {{\text{ii}}} \right)\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}\,{\text{are in A}}{\text{.P}}{\text{.}} \cr} $$