211.
In the sequence 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, . . . . . , where $$n$$ consecutive
terms have the value $$n,$$ the $$1025^{th}$$ term is
$$\eqalign{
& a,b,c,d\,\,{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \therefore \,\,\,\,\,d,c,b,a{\text{ are also in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,\,\frac{d}{{abcd}},\frac{c}{{abcd}},\frac{b}{{abcd}},\frac{a}{{abcd}}{\text{ are also in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,\,\frac{1}{{abc}},\frac{1}{{abd}},\frac{1}{{acd}},\frac{1}{{bcd}}{\text{ are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,abc,abd,acd,bcd{\text{ are in H}}{\text{.P}}{\text{.}} \cr} $$
213.
$$\frac{{{a^n} + {b^n}}}{{{a^{n - 1}} + {b^{n - 1}}}}$$ is the HM between $$a$$ and $$b$$ if $$n$$ is
214.
Let $${a_1},{a_2},{a_3},.....$$ be in harmonic progression with $${a_1} = 5$$ and $${a_{20}} = 25$$ . The least positive integer $$n$$ for which $${a_n} < 0$$ is
215.
Let $${a_n}$$ be the $${n^{th}}$$ term of an A.P. If $$\sum\limits_{r = 1}^{100} {{a_{2r}} = \alpha } $$ and $$\sum\limits_{r = 1}^{100} {{a_{2r - 1}} = \beta }, $$ then the common difference of the A.P. is
Let $$d$$ be the common difference of the A.P.
Then $${a_{2r}} = {a_{2r - 1}} + d.$$
$$\eqalign{
& \therefore \sum\limits_{r = 1}^{100} {{a_{2r}}} = \sum\limits_{r = 1}^{100} {\left( {{a_{2r - 1}} + d} \right)} = \sum\limits_{r = 1}^{100} {{a_{2r - 1}} + 100d} \cr
& \Rightarrow \alpha = \beta + 100d \cr
& \Rightarrow d = \frac{{\alpha - \beta }}{{100}} \cr} $$
216.
Let $$a, b, c$$ $$ \in $$ $$R$$ . If $$f\left( x \right) = a{x^2} + bx + c$$ is such that $$a + b + c = 3{\text{ and }}f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy,\,\forall \,x,y \in R,{\text{ then }}\sum\limits_{n = 1}^{10} {f\left( n \right)} {\text{ is equal to:}}$$