201. If $$a, b, c$$  are in G.P., then

A $${{a^2},{b^2},{c^2}{\text{ are in G}}{\text{.P}}{\text{.}}}$$
B $${a^2}\left( {b + c} \right),{c^2}\left( {a + b} \right),{b^2}\left( {a + c} \right){\text{are in G}}{\text{.P}}{\text{.}}$$
C $$\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}{\text{are in G}}{\text{.P}}{\text{.}}$$
D None of these
Answer :   $${{a^2},{b^2},{c^2}{\text{ are in G}}{\text{.P}}{\text{.}}}$$
Discuss Question

202. If$$,$$ $$8, - 4$$  and $$13$$ be three (not necessarily consecutive term) of an A.P.$$,$$ how many such A.P. $$s$$ are possible ?

A 1
B 2
C infinitely many
D no such A.P. is possible
Answer :   infinitely many
Discuss Question

203. It is given that $$\frac{1}{{{1^4}}} + \frac{1}{{{2^4}}} + \frac{1}{{{3^4}}} + .....\,{\text{to }}\infty = \frac{{{\pi ^4}}}{{90}}.$$       Then $$\frac{1}{{{1^4}}} + \frac{1}{{{3^4}}} + \frac{1}{{{5^4}}} + .....\,{\text{to }}\infty $$      is equal to

A $$\frac{{{\pi ^4}}}{{96}}$$
B $$\frac{{{\pi ^4}}}{{45}}$$
C $$\frac{{{89\pi ^4}}}{{90}}$$
D none of these
Answer :   $$\frac{{{\pi ^4}}}{{96}}$$
Discuss Question

204. The interior angles of a convex polygon are in A.P., the common difference being $${5^ \circ }.$$ If the smallest angle is $$\frac{{2\pi }}{3}$$  then the number of sides is

A 9
B 16
C 7
D none of these
Answer :   9
Discuss Question

205. The first two terms of a geometric progression add up to 12. the sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is

A $$- 4$$
B $$- 12$$
C $$12$$
D $$4$$
Answer :   $$- 12$$
Discuss Question

206. Let $$f\left( x \right) = 2x + 1.$$   Then the number of real values of $$x$$ for which the three unequal numbers $$f\left( x \right),f\left( {2x} \right),f\left( {4x} \right)$$    are in G.P. is

A 1
B 2
C 0
D none of these
Answer :   0
Discuss Question

207. What is the sum of the series $$0.5 + 0.55 + 0.555 + . . . . .$$     to $$n$$ terms?

A $$\frac{5}{9}\left[ {n - \frac{2}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
B $$\frac{1}{9}\left[ {5 - \frac{2}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
C $$\frac{1}{9}\left[ {n - \frac{5}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
D $$\frac{5}{9}\left[ {n - \frac{1}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
Answer :   $$\frac{5}{9}\left[ {n - \frac{1}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
Discuss Question

208. Let $${S_k} = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 0}^n {\frac{1}{{{{\left( {k + 1} \right)}^i}}}.} $$     Then $$\sum\limits_{k = 1}^n {k{S_k}} $$  equals

A $$\frac{{n\left( {n + 1} \right)}}{2}$$
B $$\frac{{n\left( {n - 1} \right)}}{2}$$
C $$\frac{{n\left( {n + 2} \right)}}{2}$$
D $$\frac{{n\left( {n + 3} \right)}}{2}$$
Answer :   $$\frac{{n\left( {n + 3} \right)}}{2}$$
Discuss Question

209. If $$n$$ is an odd integer greater than or equal to 1 then the value of $${n^3} - {\left( {n - 1} \right)^3} + {\left( {n - 2} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}} \cdot {1^3}$$         is

A $$\frac{{{{\left( {n + 1} \right)}^2} \cdot \left( {2n - 1} \right)}}{4}$$
B $$\frac{{{{\left( {n - 1} \right)}^2} \cdot \left( {2n - 1} \right)}}{4}$$
C $$\frac{{{{\left( {n + 1} \right)}^2} \cdot \left( {2n + 1} \right)}}{4}$$
D none of these
Answer :   $$\frac{{{{\left( {n + 1} \right)}^2} \cdot \left( {2n - 1} \right)}}{4}$$
Discuss Question

210. If the sum of the first $$2n$$ terms of the A.P. 2, 5, 8, . . . . , is equal to the sum of the first $$n$$ terms of the A.P. 57, 59, 61, . . . . , then $$n$$ equals

A 10
B 12
C 11
D 13
Answer :   11
Discuss Question


Practice More MCQ Question on Maths Section