Since an A.P. is either increasing or decreasing, if possible let $$– 4$$ be the first term of an A.P., whose $$m^{th}$$ and $$n^{th}$$ terms are respectively 8 and 13. Then
$$\eqalign{
& 8 = - 4 + \left( {m - 1} \right)d\,\,{\text{and }}13 = - 4 + \left( {n - 1} \right)d \cr
& \Rightarrow \frac{{12}}{{m - 1}} = \frac{{17}}{{n - 1}} = d \cr
& {\text{Let }}\frac{{m - 1}}{{12}} = \frac{{n - 1}}{{17}} = k,\,{\text{then }}m = 12k + 1,\,{\text{and }}n = 17\,k + 1 \cr} $$
∴ for $$k = 1, 2, 3, .....$$ we get different pairs of values of $$m$$ and $$n,$$ which shows that infinite number of A.P.’s can be obtained
203.
It is given that $$\frac{1}{{{1^4}}} + \frac{1}{{{2^4}}} + \frac{1}{{{3^4}}} + .....\,{\text{to }}\infty = \frac{{{\pi ^4}}}{{90}}.$$ Then $$\frac{1}{{{1^4}}} + \frac{1}{{{3^4}}} + \frac{1}{{{5^4}}} + .....\,{\text{to }}\infty $$ is equal to
204.
The interior angles of a convex polygon are in A.P., the common difference being $${5^ \circ }.$$ If the smallest angle is $$\frac{{2\pi }}{3}$$ then the number of sides is
We know sum of all interior angles of a polygon having $$n$$ sides $$ = \left( {n - 2} \right){180^ \circ }$$
Given smallest angle $$ = {120^ \circ }$$
$$\eqalign{
& a = 120 \cr
& d = 5 \cr
& {\text{Sum, }}S = \left( {\frac{n}{2}} \right)\left( {2a + \left( {n - 1} \right)d} \right) \cr
& \left( {\frac{n}{2}} \right)\left( {240 + \left( {n - 1} \right)5} \right) = \left( {n - 2} \right){180^ \circ } \cr
& n\left( {240 + 5n - 5} \right) = \left( {n - 2} \right){360^ \circ } \cr
& 5{n^2} + 235n - 360n + 720 = 0 \cr
& 5{n^2} - 125n + 720 = 0 \cr
& {n^2} - 25n + 144 = 0 \cr
& \left( {n - 9} \right)\left( {n - 16} \right) = 0 \cr
& \therefore \,n = 9{\text{ or }}16 \cr} $$
$$n=16$$ cannot be possible since interior angle cannot be greater than $${180^ \circ }$$
Hence option A is the answer.
205.
The first two terms of a geometric progression add up to 12. the sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is
206.
Let $$f\left( x \right) = 2x + 1.$$ Then the number of real values of $$x$$ for which the three unequal numbers $$f\left( x \right),f\left( {2x} \right),f\left( {4x} \right)$$ are in G.P. is
209.
If $$n$$ is an odd integer greater than or equal to 1 then the value of $${n^3} - {\left( {n - 1} \right)^3} + {\left( {n - 2} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}} \cdot {1^3}$$ is
210.
If the sum of the first $$2n$$ terms of the A.P. 2, 5, 8, . . . . , is equal to the sum of the first $$n$$ terms of the A.P. 57, 59, 61, . . . . , then $$n$$ equals