121. If 1, $${\log _9}\left( {{3^{1 - x}} + 2} \right),{\log_3} \left( {{{4.3}^x} - 1} \right)$$      are in A.P. then $$x$$ equals

A $${\log _3}4$$
B $$1 - {\log _3}4$$
C $$1 - {\log _4}3$$
D $${\log _4}3$$
Answer :   $$1 - {\log _3}4$$
Discuss Question

122. If $$a, b, c$$  are the sides of a triangle, then the minimum value of $$\frac{a}{{b + c - a}} + \frac{b}{{c + a - b}} + \frac{c}{{a + b - c}}$$       is equal to

A 3
B 6
C 9
D 12
Answer :   3
Discuss Question

123. If the angles $$A < B < C$$   of a triangle are in A. P., then

A $${c^2} = {a^2} + {b^2} - ab$$
B $${b^2} = {a^2} + {c^2} - ac$$
C $${c^2} = {a^2} + {b^2} $$
D None of these
Answer :   $${b^2} = {a^2} + {c^2} - ac$$
Discuss Question

124. If the sum of the first ten terms of the series $${\left( {1\frac{3}{5}} \right)^2} + {\left( {2\frac{2}{5}} \right)^2} + {\left( {3\frac{1}{5}} \right)^2} + {4^2} + {\left( {4\frac{4}{5}} \right)^2} + .....,$$          is $${\frac{16}{5} m}$$  then $$m$$ is equal to :

A 100
B 99
C 102
D 101
Answer :   101
Discuss Question

125. If the first two terms of an H.P. be $$\frac{2}{5}$$ and $$\frac{12}{23}$$ then the largest positive term of the progression is the

A $${6^{th}}$$ term
B $${7^{th}}$$ term
C $${5^{th}}$$ term
D $${8^{th}}$$ term
Answer :   $${6^{th}}$$ term
Discuss Question

126. If $$\ln \left( {a + c} \right),\ln \left( {a - c} \right),\ln \left( {a - 2b + c} \right)$$       are in A.P., then

A $$a, b, c$$  are in A.P.
B $${a^2},{b^2},{c^2}$$  are in A.P.
C $$a, b, c$$  are in G.P.
D $$a, b, c$$  are in H.P.
Answer :   $$a, b, c$$  are in H.P.
Discuss Question

127. The value of $${2^{\frac{1}{4}}}{.4^{\frac{1}{8}}}{.8^{\frac{1}{{16}}}}.....\,\infty $$     is

A $$1$$
B $$2$$
C $$\frac{3}{2}$$
D $$4$$
Answer :   $$2$$
Discuss Question

128. If $$\left( {1 + x} \right)\left( {1 + {x^2}} \right)\left( {1 + {x^4}} \right).....\left( {1 + {x^{128}}} \right) = \sum\limits_{r = 0}^n {{x^r}} $$          then $$n$$ is

A 255
B 127
C 63
D none of these
Answer :   255
Discuss Question

129. If $${a_1},{a_2},.....,{a_n}$$    are in H.P., then the expression $${a_1}{a_2} + {a_2}{a_3} + ..... + {a_{n - 1}}{a_n}$$      is equals to

A $$n\left( {{a_1} - {a_n}} \right)$$
B $$\left( {n - 1} \right)\left( {{a_1} - {a_n}} \right)$$
C $$n{a_1}{a_n}$$
D $$\left( {n - 1} \right){a_1}{a_n}$$
Answer :   $$\left( {n - 1} \right){a_1}{a_n}$$
Discuss Question

130. Which one of the following options is correct ?

A $${\sin ^2}{30^ \circ },{\sin ^2}{45^ \circ },{\sin ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
B $${\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
C $${\cot ^2}{30^ \circ },{\cot ^2}{45^ \circ },{\cot ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
D $${\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
Answer :   $${\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }{\text{are in G}}{\text{.P}}{\text{.}}$$
Discuss Question


Practice More MCQ Question on Maths Section