$$\eqalign{
& {\text{We}}\,{\text{are}}\,{\text{given}}\,f\left( x \right) = {\sin ^4}x + {\cos ^4}x \cr
& \Rightarrow f'\left( x \right) = 4{\sin ^3}x\cos x - 4{\cos ^3}x\sin x \cr
& = - 4\sin x\cos x\left( {{{\cos }^2}x - {{\sin }^2}x} \right) \cr
& = - 2.\sin 2x\cos 2x = - \sin 4x \cr
& {\text{Now for }}f\left( x \right){\text{ to be increasing function}} \cr
& f'\left( x \right) > 0 \Rightarrow - \sin 4x > 0 \Rightarrow \sin 4x < 0 \cr
& \Rightarrow \pi < 4x < 2\pi \Rightarrow \frac{\pi }{4} < x < \frac{\pi }{2} \cr
& {\text{Since, If}}\,f\left( x \right)\,{\text{increasing}}\,{\text{on}}\,\left( {\frac{\pi }{4},\frac{\pi }{2}} \right) \cr
& \frac{\pi }{4} = \frac{{4\pi }}{8} > \frac{{3\pi }}{8} \cr
& {\text{It will be increasing on}}\,\left( {\frac{\pi }{4},\frac{{3\pi }}{8}} \right) \cr} $$
82.
A spherical iron ball $$10\,cm$$ in radius is coated with a layer of ice of uniform thickness that melts at a rate of $$50\,c{m^3}/\min .$$ When the thickness of ice is $$5\,cm,$$ then the rate at which the
thickness of ice decreases is
83.
Let the interval $$I = \left[ { - 1,\,4} \right]$$ and $$f:I \to R$$ be a function such that $$f\left( x \right) = {x^3} - 3x.$$ Then the range of the function is :
$$\eqalign{
& f'\left( x \right) = 3{x^2} - 3 = 3\left( {{x^2} - 1} \right) \cr
& {\text{So, }}f'\left( x \right) \leqslant 0{\text{ if }} - 1 \leqslant x \leqslant 1{\text{ and }}f'\left( x \right) > 0{\text{ if }}1 < x \leqslant 4 \cr} $$
$$\therefore f\left( x \right)$$ is decreasing in $$ - 1 \leqslant x \leqslant 1$$ and increasing in $$1 < x \leqslant 4$$
$$\therefore \min f\left( x \right) = f\left( 1 \right),\,\max f\left( x \right) = $$ the greatest among $$\left\{ {f\left( { - 1} \right),\,f\left( 4 \right)} \right\}$$
$$\eqalign{
& {\text{Now,}}\,f\left( 1 \right) = {1^3} - 3.1 = - 2 \cr
& f\left( { - 1} \right) = {\left( { - 1} \right)^3} - 3\left( { - 1} \right) = 2 \cr
& f\left( 4 \right) = 64 - 12 = 52 \cr} $$
$$\therefore $$ the range of the function $$\left[ { - 2,\,52} \right]$$
84.
The straight line $$\frac{x}{a} + \frac{y}{b} = 2$$ touches the curve $${\left( {\frac{x}{a}} \right)^n} + {\left( {\frac{y}{b}} \right)^n} = 2$$ at the point $$\left( {a,\,b} \right)$$ for :
The point $$\left( {a,\,b} \right)$$ lies on both the straight line and the given curve $${\left( {\frac{x}{a}} \right)^n} + {\left( {\frac{y}{b}} \right)^n} = 2$$
Differentiating the equation, we get
$$\eqalign{
& \frac{{dy}}{{dx}} = - \frac{{{x^{n - 1}}}}{{{a^n}}}.\frac{{{b^n}}}{{{y^{n - 1}}}} \cr
& \therefore \,{\left( {\frac{{dy}}{{dx}}} \right)_{{\text{at }}\left( {a,\,b} \right)}} = - \frac{b}{a} = {\text{the slope of }}\frac{x}{a} + \frac{y}{b} = 2 \cr} $$
Hence, it touches the curve at $$\left( {a,\,b} \right)$$ whatever may be the value of $$n.$$
85.
A wire of length 2 units is cut into two parts which are bent respectively to form a square of side = $$x$$ units and a circle of radius = $$r$$ units. If the sum of the areas of the square and the circle so formed is minimum, then:
$$\eqalign{
& 4x + 2\pi r = 2\quad \Rightarrow 2x + \pi r = 1 \cr
& S = {x^2} + \pi {r^2} \cr
& S = {\left( {\frac{{1 - \pi r}}{2}} \right)^2} + \pi {r^2} \cr
& \frac{{dS}}{{dr}} = 2\left( {\frac{{1 - \pi r}}{2}} \right)\left( {\frac{{ - \pi }}{2}} \right) + 2\pi r \cr
& \Rightarrow \frac{{ - \pi }}{2} + \frac{{{\pi ^2}r}}{2} + 2\pi r = 0\quad \Rightarrow r = \frac{1}{{\pi + 4}} \cr
& \Rightarrow x = \frac{2}{{\pi + 4}}\quad \Rightarrow x = 2r \cr} $$
86.
A line is drawn through the point (1, 2) to meet the coordinate axes at $$P$$ and $$Q$$ such that it forms a triangle $$OPQ$$, where $$O$$ is the origin. If the area of the triangle $$OPQ$$ is least, then the slope of the line $$PQ$$ is :
Equation of a line passing through $$\left( {{x_1},{y_1}} \right)$$ having slope $$m$$ is given by $$y - {y_1} = m\left( {x - {x_1}} \right)$$
Since the line $$PQ$$ is passing through (1, 2) therefore its equation is $$\left( {y - 2} \right) = m\left( {x - 1} \right)$$
where $$m$$ is the slope of the line $$PQ.$$
Now, point $$P\left( {x,0} \right)$$ will also satisfy the equation of $$PQ.$$
$$\eqalign{
& \therefore y - 2 = m\left( {x - 1} \right) \cr
& \Rightarrow 0 - 2 = m\left( {x - 1} \right) \cr
& \Rightarrow \, - 2 = m\left( {x - 1} \right)\,\, \Rightarrow x - 1 = \frac{{ - 2}}{m} \cr
& \Rightarrow x = \frac{{ - 2}}{m} + 1 \cr
& {\text{Also, }}OP = \sqrt {{{\left( {x - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = x = \frac{{ - 2}}{m} + 1 \cr
& {\text{Similarly, point }}Q\left( {0,y} \right){\text{ will satisfy equation of }}PQ \cr
& \therefore y - 2 = m\left( {x - 1} \right) \cr
& \Rightarrow y - 2 = m\left( { - 1} \right) \Rightarrow y = 2 - m{\text{ and }}OQ = y = 2 - m \cr
& {\text{Area of }}\Delta POQ = \frac{1}{2}\left( {OP} \right)\left( {OQ} \right) = \frac{1}{2}\left( {1 - \frac{2}{m}} \right)\left( {2 - m} \right) \cr
& \left( {\because {\text{ Area of }}\Delta = \frac{1}{2} \times {\text{base}} \times {\text{height}}} \right) \cr
& = \frac{1}{2}\left[ {2 - m - \frac{4}{m} + 2} \right] = \frac{1}{2}\left[ {4 - \left( {m + \frac{4}{m}} \right)} \right] \cr
& = 2 - \frac{m}{2} - \frac{2}{m} \cr} $$
$$\eqalign{
& {\text{Let}}\,{\text{Area}}\, = f\left( m \right) = 2 - \frac{m}{2} - \frac{2}{m} \cr
& {\text{Now,}}\,f'\left( m \right) = \frac{{ - 1}}{2} + \frac{2}{{{m^2}}} \cr
& {\text{Put}}\,f'(m) = 0\, \Rightarrow {m^2} = 4 \Rightarrow m = \pm 2 \cr
& {\text{Now,}}\,f''\left( m \right) = \frac{{ - 4}}{{{m^3}}} \cr
& {\left. {f''\left( m \right)} \right|_{m = 2}} = - \frac{1}{2} < 0 \cr
& {\left. {f''\left( m \right)} \right|_{m = - 2}} = \frac{1}{2} > 0 \cr} $$
Area will be least at $$m = - 2$$
Hence, slope of $$PQ$$ is $$ - 2$$
87.
If water is poured into an inverted hollow cone whose semi-vertical angle is $${30^ \circ }.$$ Its depth (measured along the axis) increases at the rate of $$1\,cm/s.$$ The rate at which the volume of water increases when the depth is $$24\,cm$$ is :
Let $$A$$ be the vertex and $$AO$$ the axis of the cone.
Let $$O'A = h$$ be the depth of water in the cone.
$$\eqalign{
& {\text{In}}\Delta AO'C, \cr
& \tan \,{30^ \circ } = \frac{{O'C}}{h}{\text{ or }}O'C = \frac{h}{{\sqrt 3 }} = {\text{radius}} \cr
& V = {\text{Volume of water in the cone}} \cr
& = \frac{1}{3}\pi {\left( {O'C} \right)^2} \times AO' \cr
& = \frac{1}{3}\pi \left( {\frac{{{h^2}}}{3}} \right) \times h \cr
& = \frac{\pi }{9}{h^3} \cr
& {\text{or }}\frac{{dV}}{{dt}} = \frac{\pi }{3}{h^2}\frac{{dh}}{{dt}}......\left( 1 \right) \cr} $$ But given that depth of water increases at the
rate of $$1\,cm/s.$$
So, $$\frac{{dh}}{{dt}} = 1\,cm/s......\left( 2 \right)$$
From $$\left( 1 \right)$$ and $$\left( 2 \right),\,\,\frac{{dV}}{{dt}} = \frac{{\pi {h^2}}}{3}$$
When $$h = 24\,cm,$$ the rate of increase of volume is $$\frac{{dV}}{{dt}} = \frac{{\pi {{\left( {24} \right)}^2}}}{3} = 192\,c{m^3}/s.$$
88.
The difference between greatest and least value of $$f\left( x \right) = 2\,\sin \,x + \sin \,2x,\,x\, \in \left[ {0,\,\frac{{3\pi }}{2}} \right]{\text{ is :}}$$