Shortest distance between two curve occurred along the common normal
Slope of normal to $${y^2} = x$$ at point $$P\left( {{t^2},t} \right)$$ is $$ - 2t$$ and slope of line $$y - x = 1$$ is 1.
As they are perpendicular to each other
$$\eqalign{
& \therefore \,\left( { - 2t} \right) = - 1 \Rightarrow t = \frac{1}{2} \cr
& \therefore \,P\left( {\frac{1}{4},\frac{1}{2}} \right) \cr} $$
and shortest distance $$ = \left| {\frac{{\frac{1}{2} - \frac{1}{4} - 1}}{{\sqrt 2 }}} \right|$$
So shortest distance between them is $$\frac{{3\sqrt 2 }}{8}$$
33.
If $$f$$ and $$g$$ are two increasing functions such that $$fog$$ is defined, then which one of the following is correct ?
A
$$fog$$ is always an increasing function
B
$$fog$$ is always a decreasing function
C
$$fog$$ is neither an increasing nor a decreasing function
36.
If $$OT$$ is the perpendicular drawn from the origin to the tangent at any point $$t$$ to the curve $$x = a\,{\cos ^3}t,\,y = a\,{\sin ^3}t,$$ then $$OT$$ is equal to :
$$\frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{{3a\,{{\sin }^2}t\,\cos \,t}}{{ - 3a\,{{\cos }^2}t\,\sin \,t}} = - \tan \,t$$
$$\therefore $$ equation of the tangent at $$‘t’$$ is
$$\eqalign{
& y - a\,{\sin ^3}t = - \tan \,t\left( {x - a\,{{\cos }^3}t} \right) \cr
& \Rightarrow x\,\tan \,t + y - a\left( {{{\sin }^3}t + \sin \,t.{{\cos }^2}t} \right) = 0 \cr
& \Rightarrow x\,\tan \,t + y - a\,\sin \,t = 0 \cr} $$
$$\therefore $$ distance from the origin to this tangent
$$ = \frac{{\left| { - a\,\sin \,t} \right|}}{{\sqrt {{{\tan }^2}t + 1} }} = \frac{{a\,\sin \,t}}{{\sec \,t}} = \frac{a}{2}\sin \,2t$$
37.
Let $$f\left( x \right) = x\left| x \right|\,{\text{and}}\,g\left( x \right) = \sin x.$$ Statement-1 : $$gof$$ is differentiable at $$x = 0$$ and its derivative is continuous at that point. Statement-2 : $$gof$$ is twice differentiable at $$x = 0.$$
A
Statement-1 is true, Statement-2 is true;
Statement-2 is not a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is false.
C
Statement-1 is false, Statement-2 is true.
D
Statement-1 is true, Statement-2 is true;
Statement-2 is a correct explanation for Statement-1.
Answer :
Statement-1 is true, Statement-2 is false.
$$\eqalign{
& {\text{Given}}\,{\text{that}}\,f\left( x \right) = x\left| x \right|\,{\text{and}}\,g\left( x \right) = \sin x \cr
& {\text{So}}\,{\text{that}}\,gof\left( x \right) = g\left( {f\left( x \right)} \right) = g\left( {x\left| x \right|} \right) = \sin x\left| x \right| \cr
& = \left\{ {_{\sin \left( {{x^2}} \right),{\text{ if }}x\, \geqslant \,0}^{\sin \left( { - {x^2}} \right),{\text{ if }}x\, < \,0}} \right. \cr
& = \left\{ {_{\sin {x^2},{\text{ if }}x\, \geqslant \,0}^{ - \sin {x^2},{\text{ if }}x\, < \,0}} \right. \cr
& \therefore \left( {gof} \right)'\left( x \right) = \left\{ {_{2x\,\cos {x^2},{\text{ if }}x \geqslant 0}^{ - 2x\cos {x^2},{\text{ if }}x < 0}} \right. \cr
& {\text{Here we observe}} \cr
& L\left( {{\text{go}}f} \right)'{\text{ }}\left( 0 \right) = 0 = R\left( {gof} \right)'\left( 0 \right){\text{ }} \cr
& \Rightarrow gof\,{\text{is differentiable at}}\,x = 0 \cr
& {\text{and}}\,{\left( {gof} \right)^\prime }\,{\text{is}}\,{\text{continuous at }}x{\text{ }} = {\text{ }}0 \cr
& {\text{Now}}\,{\left( {gof} \right)^{\prime \prime }}\left( x \right) = \left\{ {_{2\cos {x^2} - 4{x^2}\sin {x^2},\,x\, \geqslant \,0}^{ - 2\cos {x^2} + 4{x^2}\sin {x^2},\,x\, < \,0}} \right. \cr
& {\text{Here }}L{\left( {gof} \right)^{\prime \prime }}\left( 0 \right){\text{ }} = - 2{\text{ and }}R{\left( {gof} \right)^{\prime \prime }}\left( 0 \right) = 2 \cr
& \because \,\,L{\left( {gof} \right)^{\prime \prime }}\left( 0 \right) \ne R{\left( {gof} \right)^{\prime \prime }}\left( 0 \right) \cr
& \Rightarrow gof\left( x \right)\,{\text{is not twice differentiable at}}\,x = 0. \cr} $$
∴ Statement - 1 is true but statement -2 is false.
38.
$$P\left( {2,\,2} \right)$$ and $$Q\left( {\frac{1}{2},\, - 1} \right)$$ are two points on the parabola $${y^2} = 2x.$$ The coordinates of the point $$R$$ on the parabola, where the tangent to the curve is parallel to the chord $$PQ,$$ is :
A
$$\left( {\frac{5}{4},\,\sqrt {\frac{5}{2}} } \right)$$
39.
If $$\lambda ,\,\mu $$ be real numbers such that $${x^3} - \lambda {x^2} + \mu x - 6 = 0$$ has its roots real and positive then the minimum value of $$\mu $$ is :
Let $$a,\,b,\,c$$ be the roots. Then $$ab + bc + ca = \mu ,\,abc = 6$$
$$\eqalign{
& {\text{Dividing, }}\,\,\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{\mu }{6} \cr
& {\text{AM}} > {\text{GM}}\,\,\,\,\,\,\, \Rightarrow \frac{{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}}{3} \geqslant \root 3 \of {\frac{1}{{abc}}} \cr
& {\text{or }}\mu \geqslant 18.\,\root 3 \of {\frac{1}{{abc}}} = {3.6^{\frac{2}{3}}} \cr} $$
$$\therefore $$ the minimum value of $$\mu = {3.6^{\frac{2}{3}}}$$
40.
The cost of running a bus from $$A$$ to $$B,$$ is $$Rs.\left( {av + \frac{b}{v}} \right)$$ where $$v\,km/h$$ is the average speed of the bus. When the bus travels at $$30\,km/h,$$ the cost comes out to be $$Rs.75$$ while at $$40\,km/h,$$ it is $$Rs.65.$$ Then the most economical speed (in $$km/h$$ ) of the bus is :