71.
The equation of normal to the curve $$y = {\left( {1 + x} \right)^y} + {\sin ^{ - 1}}\left( {{{\sin }^2}x} \right){\text{ at }}x = 0{\text{ is :}}$$
At $$x = 0,\,y = 1$$
Hence, the point at which normal is drawn is $$P\left( {0,\,1} \right).$$
Differentiating the given equation w.r.t. $$x,$$ we have
$$\eqalign{
& {\left( {1 + x} \right)^y}\left\{ {\log \left( {1 + x} \right)\frac{{dy}}{{dx}} + \frac{y}{{1 + x}}} \right\} - \frac{{dy}}{{dx}} + \frac{1}{{\sqrt {1 - {{\sin }^4}x} }}2\,\sin \,x\,\cos \,x = 0 \cr
& {\text{or }}{\left( {\frac{{dy}}{{dx}}} \right)_{\left( {0,\, 1} \right)}} = \frac{{{{\left( {1 + 0} \right)}^1} \times \frac{1}{{1 + 0}} - \frac{{2\,\sin \,0}}{{\sqrt {1 - {{\sin }^2}0} }}}}{{1 - {{\left( {1 + 0} \right)}^1}\log \,1}} = 1 \cr} $$
$$\therefore $$ Slope of the normal $$=\, –1$$
Therefore, equation of the normal having slope $$–1$$ at point $$P\left( {0,\,1} \right)$$ is given by
$$y - 1 = - \left( {x - 0} \right){\text{ or }}x + y = 1$$
72.
The intercepts on $$x$$-axis made by tangents to the curve, $$y = \int\limits_0^x {\left| t \right|dt} ,x \in {\text{R,}}$$ which are parallel to the line $$y = 2x,$$ are equal to:
73.
Let $$f\left( x \right) = \left( {1 + {b^2}} \right){x^2} + 2bx + 1$$ and let $$m\left( b \right)$$ be the minimum value of $$f\left( x \right).$$ As $$b$$ varies, the range of $$m\left( b \right)$$ is
75.
The equation of a curve is $$y = f\left( x \right).$$ The tangents at $$\left( {1,\,f\left( 1 \right)} \right),\,\left( {2,\,f\left( 2 \right)} \right)$$ and $$\left( {3,\,f\left( 3 \right)} \right)$$ make angles $$\frac{\pi }{6},\,\frac{\pi }{3}$$ and $$\frac{\pi }{4}$$ respectively with the positive direction of the x-axis. Then the value of $$\int_2^3 {f'\left( x \right)f''\left( x \right)dx + \int_1^3 {f''\left( x \right)dx} } $$ is equal to :
76.
If the normal to the curve $$y = f\left( x \right)$$ at the point (3, 4) makes an angle $$\frac{{3\pi }}{4}$$ with the positive $$x$$-axis, then $$f'\left( 3 \right) = $$
$$\eqalign{
& {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}x,{\text{ }}{e^y}{\text{.}}\frac{{dy}}{{dx}}{\text{ }} = 2x \cr
& {\text{or,}}\,\,\frac{{dy}}{{dx}} = \frac{{2x}}{{1 + {x^2}}}\,\,\,\,\left( {\because {e^y} = 1 + {x^2}} \right) \cr
& \therefore m = \frac{{2x}}{{1 + {x^2}}}{\text{ or }}\left| m \right| = \frac{{2\left| x \right|}}{{1 + {{\left| x \right|}^2}}} \cr
& {\text{But }}1 + {\left| x \right|^2} - 2\left| x \right| = \left( {1 - {{\left| x \right|}^2}} \right) \geqslant 0 \cr
& \therefore 1 + {\left| x \right|^2} \geqslant 2\left| x \right| \cr
& \therefore \left| m \right| \leqslant 1 \cr} $$
79.
A stick of length $$a\,cm$$ rests against a vertical wall and the horizontal floor. If the foot of the stick slides with a constant velocity of $$b\,cm/s$$ then the magnitude of the velocity of the middle point of the stick when it is equally inclined with the floor and the wall, is :
Here, $$\frac{{dx}}{{dt}} = b{\text{ cm/s,}}\,\,\,{x^2} + {y^2} = {a^2}$$
Differentiating w.r.t. $$t,\,\,2x\frac{{dx}}{{dt}} + 2y\frac{{dy}}{{dt}} = 0$$
or $$2bx + 2y\frac{{dy}}{{dt}} = 0\,\,\,\,\, \Rightarrow \frac{{dy}}{{dt}} = - \frac{{bx}}{y}$$
The velocity of the middle point at time $$t$$
$$\eqalign{
& = \sqrt {{{\left\{ {\frac{{d\left( {\frac{x}{2}} \right)}}{{dt}}} \right\}}^2} + {{\left\{ {\frac{{d\left( {\frac{y}{2}} \right)}}{{dt}}} \right\}}^2}} \cr
& = \frac{1}{2}\sqrt {{{\left( {\frac{{dx}}{{dt}}} \right)}^2} + {{\left( {\frac{{dy}}{{dt}}} \right)}^2}} \cr
& = \frac{1}{2}\sqrt {{b^2} + \frac{{{b^2}{x^2}}}{{{y^2}}}} \cr} $$
When the stick is equally inclined to the wall and to the floor, $$x=y$$
$$\therefore $$ the required velocity $$ = \frac{1}{2}\sqrt {{b^2} + {b^2}} = \frac{b}{{\sqrt 2 }}$$
80.
If $$f\left( x \right)$$ is a non-zero polynomial of degree four, having local extreme points at $$x = - 1,0,1;$$ then the set $$S = \left\{ {x\,R:f\left( x \right) = f\left( 0 \right)} \right\}$$ contains exactly: