71. The equation of normal to the curve $$y = {\left( {1 + x} \right)^y} + {\sin ^{ - 1}}\left( {{{\sin }^2}x} \right){\text{ at }}x = 0{\text{ is :}}$$

A $$x + y = 1$$
B $$x - y = 1$$
C $$x + y = - 1$$
D $$x - y = - 1$$
Answer :   $$x + y = 1$$
Discuss Question

72. The intercepts on $$x$$-axis made by tangents to the curve, $$y = \int\limits_0^x {\left| t \right|dt} ,x \in {\text{R,}}$$    which are parallel to the line $$y = 2x,$$  are equal to:

A $$ \pm 1$$
B $$ \pm 2$$
C $$ \pm 3$$
D $$ \pm 4$$
Answer :   $$ \pm 1$$
Discuss Question

73. Let $$f\left( x \right) = \left( {1 + {b^2}} \right){x^2} + 2bx + 1$$       and let $$m\left( b \right)$$  be the minimum value of $$f\left( x \right).$$  As $$b$$ varies, the range of $$m\left( b \right)$$  is

A $$\left[ {0,1} \right]$$
B $$\left( {0,\frac{1}{2}} \right]$$
C $$\left[ {\frac{1}{2},1} \right]$$
D $$\left( {0,1} \right]$$
Answer :   $$\left( {0,1} \right]$$
Discuss Question

74. Let $$f\left( x \right) = \int {{e^x}\left( {x - 1} \right)\left( {x - 2} \right)dx.} $$      Then $$f$$ decreases in the interval

A $$\left( { - \infty , - 2} \right)$$
B $$\left( { - 2, - 1} \right)$$
C $$\left( {1,2} \right)$$
D $$\left( {2, + \infty } \right)$$
Answer :   $$\left( {1,2} \right)$$
Discuss Question

75. The equation of a curve is $$y = f\left( x \right).$$   The tangents at $$\left( {1,\,f\left( 1 \right)} \right),\,\left( {2,\,f\left( 2 \right)} \right)$$     and $$\left( {3,\,f\left( 3 \right)} \right)$$   make angles $$\frac{\pi }{6},\,\frac{\pi }{3}$$   and $$\frac{\pi }{4}$$ respectively with the positive direction of the x-axis. Then the value of $$\int_2^3 {f'\left( x \right)f''\left( x \right)dx + \int_1^3 {f''\left( x \right)dx} } $$       is equal to :

A $$ - \frac{1}{{\sqrt 3 }}$$
B $$\frac{1}{{\sqrt 3 }}$$
C 0
D none of these
Answer :   $$ - \frac{1}{{\sqrt 3 }}$$
Discuss Question

76. If the normal to the curve $$y = f\left( x \right)$$  at the point (3, 4) makes an angle $$\frac{{3\pi }}{4}$$ with the positive $$x$$-axis, then $$f'\left( 3 \right) = $$

A $$ - 1$$
B $$ - \frac{3}{4}$$
C $$\frac{4}{3}$$
D 1
Answer :   1
Discuss Question

77. If $$a > b > 0,$$   the minimum value of $$a\sec \,\theta - b\tan \,\theta $$    is :

A $$b-a$$
B $$\sqrt {{a^2} + {b^2}} $$
C $$\sqrt {{a^2} - {b^2}} $$
D $$2\sqrt {{a^2} - {b^2}} $$
Answer :   $$\sqrt {{a^2} - {b^2}} $$
Discuss Question

78. If $$m$$ be the slope of a tangent to the curve $${e^y} = 1 + {x^2}$$   then :

A $$\left| m \right| > 1$$
B $$m < 1$$
C $$\left| m \right| < 1$$
D $$\left| m \right| \leqslant 1$$
Answer :   $$\left| m \right| \leqslant 1$$
Discuss Question

79. A stick of length $$a\,cm$$  rests against a vertical wall and the horizontal floor. If the foot of the stick slides with a constant velocity of $$b\,cm/s$$   then the magnitude of the velocity of the middle point of the stick when it is equally inclined with the floor and the wall, is :

A $$\frac{b}{{\sqrt 2 }}{\text{ cm/s}}$$
B $$\frac{b}{2}{\text{ cm/s}}$$
C $$\frac{{ab}}{2}{\text{ cm/s}}$$
D none of these
Answer :   $$\frac{b}{{\sqrt 2 }}{\text{ cm/s}}$$
Discuss Question

80. If $$f\left( x \right)$$  is a non-zero polynomial of degree four, having local extreme points at $$x = - 1,0,1;$$   then the set $$S = \left\{ {x\,R:f\left( x \right) = f\left( 0 \right)} \right\}$$     contains exactly:

A four irrational numbers.
B four rational numbers.
C two irrational and two rational numbers.
D two irrational and one rational number.
Answer :   two irrational and one rational number.
Discuss Question


Practice More MCQ Question on Maths Section