101.
Let the function $$f\left( x \right)$$ be defined as follows:
\[f\left( x \right) = \left\{ \begin{array}{l}
{x^3} + {x^2} - 10x,\, - 1 \le x < 0\\
\cos \,x,\,0 \le x < \frac{\pi }{2}\\
1 + \sin \,x,\,\frac{\pi }{2} \le x \le \pi
\end{array} \right.\]
Then $$f\left( x \right)$$ has :
A
a local minimum at $$x = \frac{\pi }{2}$$
B
a local maximum at $$x = \frac{\pi }{2}$$
C
an absolute minimum at $$x=-1$$
D
an absolute maximum at $$x = \pi $$
Answer :
a local maximum at $$x = \frac{\pi }{2}$$
104.
A wire $$34\,cm$$ long is to be bent in the form of a quadrilateral of which each angle is $${90^ \circ }.$$ What is the maximum area which can be enclosed inside the quadrilateral?
Let one side of quadrilateral be $$x$$ and
another side be $$y$$
So, $$2\left( {x + y} \right) = 34\,\,{\text{or }}\left( {x + y} \right) = 17......\left( {\text{i}} \right)$$
We know from the basic principle that for a given perimeter square has the maximum area, so, $$x = y$$ and putting this value in equation $$\left( {\text{i}} \right)$$
$$x = y = \frac{{17}}{2}$$
Area $$ = x.y = \frac{{17}}{2} \times \frac{{17}}{2} = \frac{{289}}{4} = 72.25$$
105.
If $$P\left( x \right)$$ is a polynomial of degree less than or equal to 2 and $$S$$ is the set of all such polynomials so that $$P\left( 0 \right) = 0,\,P\left( 1 \right) = 1\,{\text{and}}\,P'\left( x \right) > 0\,\forall \,x \in \left[ {0,1} \right],\,{\text{then}}$$
A
$$S = \phi $$
B
$$S = ax + \left( {1 - a} \right){x^2}\forall a \in \left( {0,2} \right)$$
C
$$S = ax + \left( {1 - a} \right){x^2}\forall a \in \left( {0,\infty } \right)$$
D
$$S = ax + \left( {1 - a} \right){x^2}\forall a \in \left( {0,1} \right)$$
$$f\left( x \right) = 2.\cos \frac{{\sqrt 2 + 1}}{2}x.\cos \frac{{\sqrt 2 - 1}}{2}x \leqslant 2,$$ and it is 2 only when $$\cos \frac{{\sqrt 2 + 1}}{2}x$$ and $$\cos \frac{{\sqrt 2 - 1}}{2}x$$ are both equal to 1 for a value of $$x.$$ This is possible only when $$x=0.$$
107.
The equation of the tangent to the curve $$y = {e^{ - \left| x \right|}}$$ at the point where the curve cuts the line $$x = 1$$ is :
We have equation of tangent to any curve $$f\left( x \right)$$ at $$\left( {{x_1},\,{y_1}} \right){\text{ is }}\left( {y - {y_1}} \right) = {\left. {\frac{{dy}}{{dx}}} \right|_{\left( {{x_1},\,{y_1}} \right)}}\left( {x - {x_1}} \right)$$
Given curve is $$y = {e^{ - \left| x \right|}}$$
Point of intersection is $$\left( {1,\,\frac{1}{e}} \right){\text{ at }}x = 1,\,\left| x \right| = x$$
So, $$y = {e^{ - x}} \Rightarrow \frac{{dy}}{{dx}} = - {e^{ - x}}$$
$$\therefore \,{\left( {\frac{{dy}}{{dx}}} \right)_{x = 1}} = - {e^{ - 1}}$$
Therefore, equation of tangent is $$y - \frac{1}{e} = \frac{{ - 1}}{e}\left( {x - 1} \right) \Rightarrow x + ey = 2$$
108.
For $$x \in \left( {0,\frac{{5\pi }}{2}} \right),$$ define $$f\left( x \right) = \int\limits_0^x {\sqrt t } \sin t\,dt.$$ Then $$f$$ has
A
local minimum at $$\pi $$ and $$2\pi $$
B
local minimum at $$\pi $$ and local maximum at $$2\pi $$
C
local maximum at $$\pi $$ and local minimum at $$2\pi $$
D
local maximum at $$\pi $$ and $$2\pi $$
Answer :
local maximum at $$\pi $$ and local minimum at $$2\pi $$
$$\eqalign{
& f'\left( x \right) = \sqrt x \sin x,f'\left( x \right) = 0 \cr
& \Rightarrow x = 0\,{\text{or}}\,\sin x = 0 \cr
& \Rightarrow x = 2\pi ,\pi \in \left( {0,\frac{{5\pi }}{2}} \right) \cr
& f''\left( x \right) = \sqrt x \cos x + \frac{1}{{2\sqrt x }}\sin x \cr
& = \frac{1}{{2\sqrt x }}\left( {2x\cos x + \sin x} \right) \cr
& {\text{At}}\,\,x = \pi ,f''\left( x \right) < 0 \cr
& {\text{Hence, local maxima at}}\,x = \pi \cr
& {\text{At}}\,\,x = 2\pi ,f''\left( x \right) > 0 \cr
& {\text{Hence local minima at}}\,x = 2\pi \cr} $$
109.
The profit function, in rupees, of a firm selling $$x$$ items $$\left( {x \geqslant 0} \right)$$ per week is given by $$P\left( x \right) = - 3500 + \left( {400 - x} \right)x.$$ How many items should the firm sell so that the firm has maximum profit ?
$$\eqalign{
& P\left( x \right) = - 3500 + \left( {400 - x} \right)x \cr
& = - 3500 + 400x - {x^2} \cr} $$
On differentiating w.r.t. $$x,$$ we get
$$P'\left( x \right) = 400 - 2x$$
Put $$P'\left( x \right) = 0$$ for maxima or minima
$$\eqalign{
& \Rightarrow 400 - 2x = 0 \cr
& \Rightarrow x = 200 \cr
& {\text{Now }}P''\left( x \right) = - 2x \cr
& \Rightarrow P''\left( {200} \right) = - 400 < 0 \cr} $$
$$\therefore \,P\left( x \right)$$ is maximum at $$x = 200$$
Hence, $$200$$ items should the firm sell so that the firm has maximum profit.
110.
What is the slope of the tangent to the curve $$x = {t^2} + 3t - 8,\,y = 2{t^2} - 2t - 5$$ at $$t = 2\,?$$