21. If $$f\left( x \right) = a{\log _e}\left| x \right| + b{x^2} + x$$      has extremums at $$x=1$$  and $$x=3$$  then :

A $$a = - \frac{3}{4},\,b = - \frac{1}{8}$$
B $$a = \frac{3}{4},\,b = - \frac{1}{8}$$
C $$a = - \frac{3}{4},\,b = \frac{1}{8}$$
D none of these
Answer :   $$a = - \frac{3}{4},\,b = - \frac{1}{8}$$
Discuss Question

22. $$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A the area of $$\Delta ABC$$  is maximum when it is isosceles
B the area of $$\Delta ABC$$  is minimum when it is isosceles
C the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D none of these
Answer :   the area of $$\Delta ABC$$  is maximum when it is isosceles
Discuss Question

23. Let $$f(x) = \left\{ {_{1,}^{\left| x \right|,}} \right.\,_{{\text{for }}x = 0}^{{\text{for }}0 < |x| \leqslant 2}$$       then at $$x = 0,f$$  has

A a local maximum
B no local maximum
C a local minimum
D no extremum
Answer :   no extremum
Discuss Question

24. If the relation between sub-normal $$SN$$  and subtangent $$ST$$  at any point $$S$$ on the curve; $$b{y^2} = {\left( {x + a} \right)^3}$$    is $$p\left( {SN} \right) = q{\left( {ST} \right)^2},$$    then the value of $$\frac{p}{q}$$ is :

A $$\frac{{8a}}{{27}}$$
B $$\frac{{27}}{{8b}}$$
C $$\frac{{8b}}{{27}}$$
D $$\frac{8}{{27}}$$
Answer :   $$\frac{{8b}}{{27}}$$
Discuss Question

25. The equation of the tangent to the curve $$y = {e^{ - \left| x \right|}}$$   at the point where the curve cuts the line $$x=1$$  is :

A $$x+y=e$$
B $$e\left( {x + y} \right) = 1$$
C $$y+ex=1$$
D none of these
Answer :   none of these
Discuss Question

26. The function $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sin x + \cos x} \right)$$       is an increasing function in

A $$\left( {0,\frac{\pi }{2}} \right)$$
B $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
C $$\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$$
D $$\left( { - \frac{\pi }{2},\frac{\pi }{4}} \right)$$
Answer :   $$\left( { - \frac{\pi }{2},\frac{\pi }{4}} \right)$$
Discuss Question

27. The largest area of a trapezium inscribed in a semicircle of radius $$R,$$ if the lower base is on the diameter, is :

A $$\frac{{3\sqrt 3 }}{4}{R^2}$$
B $$\frac{{\sqrt 3 }}{2}{R^2}$$
C $$\frac{{3\sqrt 3 }}{8}{R^2}$$
D $${R^2}$$
Answer :   $$\frac{{3\sqrt 3 }}{4}{R^2}$$
Discuss Question

28. In [0,1] Lagranges Mean Value theorem is NOT applicable to

A \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{1}{2} - x}&{x < \frac{1}{2}} \\ {{{\left( {\frac{1}{2} - x} \right)}^2}}&{x \geqslant \frac{1}{2}} \end{array}} \right.\]
B \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{\sin x}}{x},} \\ {1,} \end{array}} \right.\begin{array}{*{20}{c}} {x \ne 0} \\ {x = 0} \end{array}\]
C $$f\left( x \right) = x\left| x \right|$$
D $$f\left( x \right) = \left| x \right|$$
Answer :   \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{1}{2} - x}&{x < \frac{1}{2}} \\ {{{\left( {\frac{1}{2} - x} \right)}^2}}&{x \geqslant \frac{1}{2}} \end{array}} \right.\]
Discuss Question

29. If $$x\, \in \,\left[ { - 1,\,1} \right]$$   then the minimum value of $$f\left( x \right) = {x^2} + x + 1$$    is :

A $$ - \frac{3}{4}$$
B $$1$$
C $$3$$
D none of these
Answer :   none of these
Discuss Question

30. If $$2a + 3b + 6c = 0,$$    then at least one root of the equation $$a{x^2} + bx + c = 0$$     lies in the interval

A (1, 3)
B (1, 2)
C (2, 3)
D (0, 1)
Answer :   (0, 1)
Discuss Question


Practice More MCQ Question on Maths Section