11. If the function $$f\left( x \right) = 2{x^3} - 9a{x^2} + 12{a^2}x + 1,$$       where $$a > 0,$$  attains its maximum and minimum at $$p$$ and $$q$$ respectively such that $${p^2} = q,$$   then $$a$$ equals

A $$\frac{1}{2}$$
B 3
C 1
D 2
Answer :   2
Discuss Question

12. The length of a longest interval in which the function $$3\sin x - 4{\sin ^3}x$$    is increasing, is

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{2}$$
C $$\frac{{3\pi }}{2}$$
D $$\pi $$
Answer :   $$\frac{\pi }{3}$$
Discuss Question

13. If the rate of change in volume of spherical soap bubble is uniform, then the rate of change of surface area varies as :

A square of radius
B square root of radius
C inversely proportional to radius
D cube of the radius
Answer :   inversely proportional to radius
Discuss Question

14. The function $$f\left( x \right) = \frac{x}{2} + \frac{2}{x}$$    has a local minimum at

A $$x = 2$$
B $$x = - 2$$
C $$x = 0$$
D $$x = 1$$
Answer :   $$x = 2$$
Discuss Question

15. Let the equation of a curve be $$x = a\left( {\theta + \sin \,\theta } \right),\,y = a\left( {1 - \cos \,\theta } \right).$$        If $$\theta $$ changes at a constant rate $$k$$ then the rate of change of the slope of the tangent to the curve at $$\theta = \frac{\pi }{3}$$  is :

A $$\frac{{2k}}{{\sqrt 3 }}$$
B $$\frac{{k}}{{\sqrt 3 }}$$
C $$k$$
D none of these
Answer :   none of these
Discuss Question

16. If $$x\,\cos \,\theta + y\,\sin \,\theta = 2$$     is perpendicular to the line $$x - y = 3,$$   then what is one of the value of $$\theta \,?$$

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{2}$$
D $$\frac{\pi }{3}$$
Answer :   $$\frac{\pi }{4}$$
Discuss Question

17. Consider the following statements :
1. $$f\left( x \right) = \ln \,x$$   is an increasing function on $$\left( {0,\,\infty } \right)$$
2. $$f\left( x \right) = {e^x} - x\left( {\ln \,x} \right)$$     is an increasing function on $$\left( {1,\,\infty } \right).$$
Which of the above statements is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   Both 1 and 2
Discuss Question

18. Let $$f\left( x \right) = 6 - 12x + 9{x^2} - 2{x^3},\,1 \leqslant x \leqslant 4.$$         Then the absolute maximum value of $$f\left( x \right)$$  in the interval is :

A $$2$$
B $$1$$
C $$4$$
D none of these
Answer :   $$2$$
Discuss Question

19. The slope of the tangent to the locus $$y = {\cos ^{ - 1}}\left( {\cos \,x} \right)$$    at $$x = - \frac{\pi }{4}$$   is :

A $$1$$
B $$0$$
C $$2$$
D $$ - 1$$
Answer :   $$ - 1$$
Discuss Question

20. The function $$f\left( x \right) = 2\,\log \left( {x - 2} \right) - {x^2} + 4x + 1$$       increases on the interval :

A $$\left( {1,\,2} \right)$$
B $$\left( {2,\,3} \right)$$
C $$\left( {\frac{1}{2},\,3} \right)$$
D $$\left( {2,\,4} \right)$$
Answer :   $$\left( {2,\,3} \right)$$
Discuss Question


Practice More MCQ Question on Maths Section