11.
If the function $$f\left( x \right) = 2{x^3} - 9a{x^2} + 12{a^2}x + 1,$$ where $$a > 0,$$ attains its maximum and minimum at $$p$$ and $$q$$ respectively such that $${p^2} = q,$$ then $$a$$ equals
$$\eqalign{
& f\left( x \right) = \frac{x}{2} + \frac{2}{x} \Rightarrow f'\left( x \right) = \frac{1}{2} - \frac{2}{{{x^2}}} = 0 \cr
& \Rightarrow {x^2} = 4{\text{ or }}x = 2, - 2;\,f''\left( x \right) = \frac{4}{{{x^3}}} \cr
& {\left. {f''\left( x \right)} \right]_{x = 2}} = + ve \Rightarrow f\left( x \right){\text{ has local min at }}x = 2. \cr} $$
15.
Let the equation of a curve be $$x = a\left( {\theta + \sin \,\theta } \right),\,y = a\left( {1 - \cos \,\theta } \right).$$ If $$\theta $$ changes at a constant rate $$k$$ then the rate of change of the slope of the tangent to the curve at $$\theta = \frac{\pi }{3}$$ is :
Consider a line
$$\eqalign{
& x\,\cos \,\theta + y\,\sin \,\theta = 2 \cr
& \Rightarrow y\,\sin \,\theta = - x\,\cos \,\theta + 2 \cr
& \Rightarrow y = - x\frac{{\cos \,\theta }}{{\sin \,\theta }} + \frac{2}{{\sin \,\theta }} \cr
& \Rightarrow y = - x\,\cot \,\theta + 2\,{\text{cosec}}\,\theta \cr} $$
On comparing this equation with $$y = mx + c$$ we get
slope of line $$x\,\cos \,\theta + y\,\sin \,\theta = 2{\text{ is }} - \cot \,\theta $$
Also, we have a line $$x - y = 3\, \Rightarrow y = x - 3$$
slope of line $$x - y = 3$$ is $$1$$
Since, both the lines are perpendicular to each other.
$$\therefore $$ Product of their slopes $$ = - 1$$
$$\eqalign{
& \Rightarrow \left( { - \cot \,\theta } \right)\left( 1 \right) = - 1 \cr
& \Rightarrow \cot \,\theta = 1 = \cot \frac{\pi }{4} \cr
& \Rightarrow \theta = \frac{\pi }{4} \cr} $$
17.
Consider the following statements :
1. $$f\left( x \right) = \ln \,x$$ is an increasing function on $$\left( {0,\,\infty } \right)$$
2. $$f\left( x \right) = {e^x} - x\left( {\ln \,x} \right)$$ is an increasing function on $$\left( {1,\,\infty } \right).$$
Which of the above statements is/are correct ?
$$\eqalign{
& f\left( x \right) = \log \,x \cr
& {\text{Clearly }}f\left( x \right){\text{ is increasing on}}\,\left( {0,\,\infty } \right) \cr
& f\left( x \right) = {e^x} - x\,\log \,x \cr
& f'\left( x \right) = {e^x} - \left( {\log \,x + 1} \right) \cr} $$
From the figure it is clear that $$f'\left( x \right) > 0$$ on $$\left( {1,\,\infty } \right).$$
So both statements (1) & (2) are correct.
18.
Let $$f\left( x \right) = 6 - 12x + 9{x^2} - 2{x^3},\,1 \leqslant x \leqslant 4.$$ Then the absolute maximum value of $$f\left( x \right)$$ in the interval is :