121. Let $$a,b \in R$$   be such that the function $$f$$ given by $$f\left( x \right) = \ln \left| x \right| + b{x^2} + ax,x \ne 0$$       has extreme values at $$x = - 1$$   and $$x = 2$$
Statement-1 : $$f$$ has local maximum at $$x = - 1$$   and at $$x = 2.$$
Statement-2 : $$a = \frac{1}{2}$$ and $$b = \frac{{ - 1}}{4}$$

A Statement-1 is false, Statement-2 is true.
B Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
C Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.
D Statement-1 is true, statement-2 is false.
Answer :   Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
Discuss Question

122. Let $$f\left( x \right)$$  be a function defined as follows :
$$f\left( x \right) = \sin \left( {{x^2} - 3x} \right),\,x \leqslant 0;$$      and $$6x + 5{x^2},\,x > 0$$
Then at $$x = 0,\,f\left( x \right)$$

A has a local maximum
B has a local minimum
C is discontinuous
D None of these
Answer :   has a local minimum
Discuss Question

123. If at each point of the curve $$y = {x^3} - a{x^2} + x + 1$$     the tangent is inclined at an acute angle with the positive direction of the $$x$$-axis then :

A $$a > 0$$
B $$a \leqslant \sqrt 3 $$
C $$ - \sqrt 3 \leqslant a \leqslant \sqrt 3 $$
D none of these
Answer :   $$ - \sqrt 3 \leqslant a \leqslant \sqrt 3 $$
Discuss Question

124. A ball is dropped from a platform $$19.6\,m$$  high. Its position function is :

A $$x = - 4.9{t^2} + 19.6\left( {0 \leqslant t \leqslant 1} \right)$$
B $$x = - 4.9{t^2} + 19.6\left( {0 \leqslant t \leqslant 2} \right)$$
C $$x = - 9.8{t^2} + 19.6\left( {0 \leqslant t \leqslant 2} \right)$$
D $$x = - 4.9{t^2} - 19.6\left( {0 \leqslant t \leqslant 2} \right)$$
Answer :   $$x = - 4.9{t^2} + 19.6\left( {0 \leqslant t \leqslant 2} \right)$$
Discuss Question

125. The point in the interval $$\left( {0,\,2\pi } \right)$$  where $$f\left( x \right) = {e^x}\sin \,x$$     has maximum slope is :

A $$\frac{\pi }{4}$$
B $$\frac{\pi }{2}$$
C $$\pi $$
D $$\frac{{3\pi }}{2}$$
Answer :   $$\frac{\pi }{4}$$
Discuss Question

126. The maximum value of $${\left( {\frac{1}{x}} \right)^{2{x^2}}}$$  is :

A $$e$$
B $$\root e \of e $$
C 1
D none of these
Answer :   $$\root e \of e $$
Discuss Question

127. The maximum area of a right angled triangle with hypotenuse $$h$$ is :

A $$\frac{{{h^2}}}{{2\sqrt 2 }}$$
B $$\frac{{{h^2}}}{2}$$
C $$\frac{{{h^2}}}{{\sqrt 2 }}$$
D $$\frac{{{h^2}}}{4}$$
Answer :   $$\frac{{{h^2}}}{4}$$
Discuss Question

128. The motion of a particle is described as $$s = 2 - 3t + 4{t^3}.$$    What is the acceleration of the particle at the point where its velocity is zero?

A 0 unit
B 4 units
C 8 units
D 12 units
Answer :   8 units
Discuss Question

129. A point on the parabola $${y^2} = 18x$$   at which the ordinate increases at twice the rate of the abscissa is

A $$\left( {\frac{9}{8},\frac{9}{2}} \right)$$
B $$\left( {2, - 4} \right)$$
C $$\left( {\frac{{ - 9}}{8},\frac{9}{2}} \right)$$
D $$\left( {2,4} \right)$$
Answer :   $$\left( {\frac{9}{8},\frac{9}{2}} \right)$$
Discuss Question

130. How many real solutions does the equation $${x^7} + 14{x^5} + 16{x^3} + 30x - 560 = 0$$       have ?

A 7
B 1
C 3
D 5
Answer :   1
Discuss Question


Practice More MCQ Question on Maths Section