41. Let $$x$$ be a number which exceeds its square by the greatest possible quantity. Then $$x$$ is equal to :

A $$\frac{1}{2}$$
B $$\frac{1}{4}$$
C $$\frac{3}{4}$$
D none of these
Answer :   $$\frac{1}{2}$$
Discuss Question

42. Let $$f\left( x \right) = {\left( {x - p} \right)^2} + {\left( {x - q} \right)^2} + {\left( {x - r} \right)^2}.$$        Then $$f\left( x \right)$$  has a minimum at $$x = \lambda ,$$  where $$\lambda $$ is equal to :

A $$\frac{{p + q + r}}{3}$$
B $$\root 3 \of {pqr} $$
C $$\frac{3}{{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}}$$
D none of these
Answer :   $$\frac{{p + q + r}}{3}$$
Discuss Question

43. The slope of the tangent to the curve $$y = \sqrt {4 - {x^2}} $$   at the point where the ordinate and the abscissa are equal, is :

A $$-1$$
B $$1$$
C $$0$$
D none of these
Answer :   $$-1$$
Discuss Question

44. Let $$f\left( x \right) = \cos \,\pi x + 10x + 3{x^2} + {x^3},\, - 2 \leqslant x \leqslant 3.$$          The absolute minimum value of $$f\left( x \right)$$  is :

A 0
B $$-15$$
C $$3 - 2\pi $$
D none of these
Answer :   $$-15$$
Discuss Question

45. If at each point of the curve $$y = {x^3} - a{x^2} + x + 1,$$     the tangent is inclined at an acute angle with the positive direction of the $$x$$-axis, then :

A $$a > 0$$
B $$a \leqslant \sqrt 3 $$
C $$ - \sqrt 3 \leqslant a \leqslant \sqrt 3 $$
D none of these
Answer :   $$ - \sqrt 3 \leqslant a \leqslant \sqrt 3 $$
Discuss Question

46. Find the angle between the tangent to the curve $${y^2} = 2ax$$   at the points where $$x = \frac{a}{2}.$$

A $${180^ \circ }$$
B $${90^ \circ }$$
C $${0^ \circ }$$
D none of these
Answer :   $${90^ \circ }$$
Discuss Question

47. If $${1^ \circ } = \alpha $$  radians then the approximate value of $$\cos \,{60^ \circ }1'$$  is :

A $$\frac{1}{2} + \frac{{\alpha \sqrt 3 }}{{120}}$$
B $$\frac{1}{2} - \frac{\alpha }{{120}}$$
C $$\frac{1}{2} - \frac{{\alpha \sqrt 3 }}{{120}}$$
D none of these
Answer :   $$\frac{1}{2} - \frac{{\alpha \sqrt 3 }}{{120}}$$
Discuss Question

48. The angle between two tangents to the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$$   at the points where the line $$y=1$$  cuts the curve is :

A $$\frac{\pi }{4}$$
B $${\tan ^{ - 1}}\frac{{6\sqrt 2 }}{7}$$
C $$\frac{\pi }{2}$$
D none of these
Answer :   $${\tan ^{ - 1}}\frac{{6\sqrt 2 }}{7}$$
Discuss Question

49. A man is moving away from a tower $$41.6\,m$$  high at a rate of $$2\,m/s.$$  If the eye level of the man is $$1.6\,m$$  above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of $$30\,m$$  from the foot of the tower, is :

A $$ - \frac{4}{{125}}\,rad/s$$
B $$ - \frac{2}{{25}}\,rad/s$$
C $$ - \frac{1}{{625}}\,rad/s$$
D none of these
Answer :   $$ - \frac{4}{{125}}\,rad/s$$
Discuss Question

50. What is the slope of the tangent to the curve $$y = {\sin ^{ - 1}}\left( {{{\sin }^2}x} \right)$$    at $$x = 0\,?$$

A 0
B 1
C 2
D none of these
Answer :   0
Discuss Question


Practice More MCQ Question on Maths Section