111. The number of tangents to the curve $${y^2} - 2{x^3} - 4y + 8 = 0$$     that pass through $$\left( {1,\,2} \right)$$  is :

A $$3$$
B $$1$$
C $$2$$
D $$6$$
Answer :   $$2$$
Discuss Question

112. If $$f\left( x \right) = {x^3} + bx + cx + d$$      and $$0 < {b^2} < c,$$    then in $$\left( { - \infty ,\infty } \right)$$

A $${f\left( x \right)}$$  is a strictly increasing function
B $${f\left( x \right)}$$  has a local maxima
C $${f\left( x \right)}$$  is a strictly decreasing function
D $${f\left( x \right)}$$  is bounded
Answer :   $${f\left( x \right)}$$  is a strictly increasing function
Discuss Question

113. If water is poured into an inverted hollow cone whose semi-vertical angle is $${30^ \circ }.$$  Its depth (measured along the axis) increases at the rate of $$1\,cm/s.$$  The rate at which the volume of water increases when the depth is $$24\,cm$$  is :

A $$162\,c{m^3}/s$$
B $$172\,c{m^3}/s$$
C $$182\,c{m^3}/s$$
D $$192\,c{m^3}/s$$
Answer :   $$192\,c{m^3}/s$$
Discuss Question

114. The total number of local maxima and local minima of the function $$f(x) = \left\{ {_{{x^{\frac{2}{3}}},}^{{{(2 + x)}^3},}\,_{ - 1 < x < 2}^{ - 3 < x \leqslant - 1}} \right.\,{\text{is}}$$

A 0
B 1
C 2
D 3
Answer :   2
Discuss Question

115. The two curves $${x^3} - 3x{y^2} + 2 = 0$$     and $$3{x^2}y - {y^3} = 2$$

A cuts at right angle
B touch each other
C cut at an angle $$\frac{\pi }{3}$$
D cut at an angle $$\frac{\pi }{4}$$
Answer :   cuts at right angle
Discuss Question

116. The velocity of telegraphic communication is given by $$v = {x^2}\log \left( {\frac{1}{x}} \right),$$    where $$x$$ is the displacement. For maximum velocity, $$x$$ equals to ?

A $${e^{\frac{1}{2}}}$$
B $${e^{ - \frac{1}{2}}}$$
C $${\left( {2e} \right)^{ - 1}}$$
D $$2{e^{ - \frac{1}{2}}}$$
Answer :   $${e^{ - \frac{1}{2}}}$$
Discuss Question

117. Consider the following statements in $$S$$ and $$R$$
$$S$$ : Both $$\sin x$$  and $$\cos x$$  are decreasing functions in the interval $$\left( {\frac{\pi }{2},\pi } \right)$$
$$R$$ : If a differentiable function decreases in an interval$$\left( {a,b} \right),$$  then its derivative also decreases in $$\left( {a,b} \right).$$
Which of the following is true ?

A Both $$S$$ and $$R$$ are wrong
B Both $$S$$ and $$R$$ are correct, but $$R$$ is not the correct explanation of $$S$$
C $$S$$ is correct and $$R$$ is the correct explanation for $$S$$
D $$S$$ is correct and $$R$$ is wrong
Answer :   $$S$$ is correct and $$R$$ is wrong
Discuss Question

118. If $$f\left( x \right) = \frac{x}{{\sin x}}$$    and $$g\left( x \right) = \frac{x}{{\tan x}}$$    where $$0 < x \leqslant 1,$$   then in this interval

A both $$f\left( x \right)$$  and $$g\left( x \right)$$  are increasing functions
B both $$f\left( x \right)$$  and $$g\left( x \right)$$  are decreasing functions
C $$f\left( x \right)$$  is an increasing function
D $$g\left( x \right)$$  is an increasing function.
Answer :   $$f\left( x \right)$$  is an increasing function
Discuss Question

119. If $$f\left( x \right) = {x^3} + 4{x^2} + \lambda x + 1$$      is a monotonically decreasing function of $$x$$ in the largest possible interval $$\left( { - 2,\, - \frac{2}{3}} \right)$$   then :

A $$\lambda = 4$$
B $$\lambda = 2$$
C $$\lambda = - 1$$
D $$\lambda$$ has no real value
Answer :   $$\lambda = 4$$
Discuss Question

120. Let $$f\left( x \right) = 1 + 2{x^2} + {2^2}{x^4} + ..... + {2^{10}}{x^{20}}.$$         Then $$f\left( x \right)$$  has :

A more than one minimum
B exactly one minimum
C at least one maximum
D none of these
Answer :   exactly one minimum
Discuss Question


Practice More MCQ Question on Maths Section