$$\eqalign{
& f\left( x \right) = {x^3} + b{x^2} + cx + d,\,0 < {b^2} < c \cr
& f'\left( x \right) = 3{x^2} + 2bx + c \cr
& {\text{Discriminant}} = 4{b^2} - 12c = 4\left( {{b^2} - 3c} \right) < 0 \cr
& \therefore \,\,f'\left( x \right) > 0\,\forall x \in R \cr
& \Rightarrow \,\,f\left( x \right)\,{\text{is}}\,{\text{strictly}}\,{\text{increasing}}\,\forall x \in R \cr} $$
113.
If water is poured into an inverted hollow cone whose semi-vertical angle is $${30^ \circ }.$$ Its depth (measured along the axis) increases at the rate of $$1\,cm/s.$$ The rate at which the volume of water increases when the depth is $$24\,cm$$ is :
Let $$A$$ be the vertex and $$AO$$ the axis of the cone.
Let $$O'A = h$$ be the depth of water in the cone.
$$\eqalign{
& {\text{In}}\,\Delta AO'C, \cr
& \tan \,{30^ \circ } = \frac{{O'C}}{h}{\text{ or }}O'C = \frac{h}{{\sqrt 3 }} = {\text{radius}} \cr
& V = {\text{Volume of water in the cone}} \cr
& \,\,\,\,\,\,\, = \frac{1}{3}\pi {\left( {O'C} \right)^2} \times AO' \cr
& \,\,\,\,\,\,\, = \frac{1}{3}\pi \left( {\frac{{{h^2}}}{3}} \right) \times h \cr
& \,\,\,\,\,\,\, = \frac{\pi }{9}{h^3} \cr
& {\text{or }}\frac{{dV}}{{dt}} = \frac{\pi }{3}{h^2}\frac{{dh}}{{dt}}......\left( 1 \right) \cr} $$
But given that depth of water increases at the rate of $$1\,cm/s.$$
So, $$\frac{{dh}}{{dt}} = 1\,cm/s.......\left( 2 \right)$$
From $$\left( 1 \right){\text{ and}}\,\left( 2 \right),\,\frac{{dV}}{{dt}} = \frac{{\pi {h^2}}}{3}$$
When $$h = 24\,cm,$$ the rate of increase of volume is $$\frac{{dV}}{{dt}} = \frac{{\pi {{\left( {24} \right)}^2}}}{3} = 192\,c{m^3}/s.$$
114.
The total number of local maxima and local minima of the function $$f(x) = \left\{ {_{{x^{\frac{2}{3}}},}^{{{(2 + x)}^3},}\,_{ - 1 < x < 2}^{ - 3 < x \leqslant - 1}} \right.\,{\text{is}}$$
The given function is $$f(x) = \left\{ {_{{x^{\frac{2}{3}}},}^{{{(2 + x)}^3},}\,_{ - 1 < x < 2}^{ - 3 < x \leqslant - 1}} \right.$$
The graph of $$y = f\left( x \right)$$ is as shown in the figure. From graph, clearly, there is one local maximum $$\left( {{\text{at}}\,x = - 1} \right)$$ and one local minima $$\left( {{\text{at}}\,x = 0} \right)$$
∴ total number of local maxima or minima = 2.
115.
The two curves $${x^3} - 3x{y^2} + 2 = 0$$ and $$3{x^2}y - {y^3} = 2$$
116.
The velocity of telegraphic communication is given by $$v = {x^2}\log \left( {\frac{1}{x}} \right),$$ where $$x$$ is the displacement. For maximum velocity, $$x$$ equals to ?
Given, velocity is $$v = {x^2}\log \left( {\frac{1}{x}} \right) = - {x^2}\log \,x$$ where $$x$$ is displacement.
For maximum velocity, $$\frac{{dv}}{{dx}} = 0$$
Now, $$\frac{{dv}}{{dx}} = - {x^2}\frac{1}{x} + \log \,x\left( { - 2x} \right) = - x - 2x\,\log \,x$$
$$\eqalign{
& \frac{{dv}}{{dx}} = 0 \cr
& \Rightarrow - x - 2x\,\log \,x = 0 \cr
& \Rightarrow x = - 2x\,\log \,x \cr
& \Rightarrow \frac{{ - 1}}{2} = \log \,x \cr
& \Rightarrow x = {e^{ - \frac{1}{2}}} \cr} $$
Hence, for maximum velocity $$x = {e^{ - \frac{1}{2}}}$$
117.
Consider the following statements in $$S$$ and $$R$$
$$S$$ : Both $$\sin x$$ and $$\cos x$$ are decreasing functions in the interval $$\left( {\frac{\pi }{2},\pi } \right)$$
$$R$$ : If a differentiable function decreases in an interval$$\left( {a,b} \right),$$ then its derivative also decreases in $$\left( {a,b} \right).$$
Which of the following is true ?
A
Both $$S$$ and $$R$$ are wrong
B
Both $$S$$ and $$R$$ are correct, but $$R$$ is not the correct explanation of $$S$$
C
$$S$$ is correct and $$R$$ is the correct explanation for $$S$$
From graph it is clear that both $$\sin x$$ and $$\cos x$$ in the interval $$\left( {\frac{\pi }{2},\pi } \right)$$ are decreasing function.
$$\therefore $$ $$S$$ is correct.
To disprove $$R$$ let us consider the counter example :
$$f\left( x \right) = \sin x\,{\text{on}}\,\left( {0,\frac{\pi }{2}} \right)\,{\text{so}}\,{\text{that}}\,f'\left( x \right) = \cos x$$
Again from graph it is clear that $$f\left( x \right)$$ is increasing on $$\left( {0,\frac{\pi }{2}} \right)$$ but $$f'\left( x \right)$$ is decreasing on $$\left( {0,\frac{\pi }{2}} \right)$$
∴ $$R$$ is wrong.
118.
If $$f\left( x \right) = \frac{x}{{\sin x}}$$ and $$g\left( x \right) = \frac{x}{{\tan x}}$$ where $$0 < x \leqslant 1,$$ then in this interval
A
both $$f\left( x \right)$$ and $$g\left( x \right)$$ are increasing functions
B
both $$f\left( x \right)$$ and $$g\left( x \right)$$ are decreasing functions
C
$$f\left( x \right)$$ is an increasing function
D
$$g\left( x \right)$$ is an increasing function.
Answer :
$$f\left( x \right)$$ is an increasing function
$$\eqalign{
& {\text{We}}\,{\text{have}}\,f\left( x \right) = \frac{x}{{\sin x}},0 < x \leqslant 1 \cr
& \Rightarrow f'\left( x \right) = \frac{{\sin x - x\cos x}}{{{{\sin }^2}x}} \cr
& {\text{where}}\,{\sin ^2}x{\text{ is always }} + ve,{\text{ when }}0 < x \leqslant 1.{\text{ But to check Nr}}{\text{., we again let}} \cr
& h\left( x \right) = \sin x - x\cos x \cr
& \Rightarrow h'\left( x \right) = x\sin x > 0\,{\text{for}}\,0 < x \leqslant 1 \Rightarrow h\left( x \right)\,{\text{is increasing}} \cr
& \Rightarrow h\left( 0 \right) < h\left( x \right),\,{\text{when}}\,0 < x \leqslant 1 \cr
& \Rightarrow 0 < \sin x - x\cos x,\,{\text{when}}\,0 < x \leqslant 1 \cr
& \Rightarrow \sin x - x\cos x > 0,\,{\text{when}}\,0 < x \leqslant 1 \cr
& \Rightarrow f'\left( x \right) > 0,x \in \left( {0,1} \right] \cr
& \Rightarrow f\left( x \right)\,{\text{is}}\,{\text{increasing}}\,{\text{on}}\,\left( {0,1} \right] \cr
& {\text{Again}}\,g\left( x \right) = \frac{x}{{\tan x}} \cr
& \Rightarrow g'\left( x \right) = \frac{{\tan x - x{{\sec }^2}x}}{{{{\tan }^2}x}},\,{\text{when}}\,0 < x \leqslant 1 \cr
& {\text{Here}}\,{\tan ^2}x > 0\,{\text{But}}\,{\text{to check Nr}}{\text{. we consider}} \cr
& p\left( x \right) = \tan x - x{\sec ^2}x \cr
& p'\left( x \right) = {\sec ^2}x - {\sec ^2}x - x.2\sec x.\sec x\tan x \cr
& \Rightarrow p'\left( x \right) = - 2x{\sec ^2}x\tan x < 0\,{\text{for}}\,0 < x \leqslant 1 \cr
& \Rightarrow p\left( x \right)\,{\text{is decreasing, when}}\,0 < x \leqslant 1 \cr
& \Rightarrow p\left( 0 \right) > p\left( x \right) \Rightarrow 0 > \tan x - x{\sec ^2}x \cr
& \therefore g'\left( x \right) < 0 \cr
& {\text{Hence }}g\left( x \right){\text{ is decreasing when}}\,0 < x \leqslant 1. \cr} $$
119.
If $$f\left( x \right) = {x^3} + 4{x^2} + \lambda x + 1$$ is a monotonically decreasing function of $$x$$ in the largest possible interval $$\left( { - 2,\, - \frac{2}{3}} \right)$$ then :