81. The function $$f\left( x \right) = {\sin ^4}x + {\cos ^4}x$$     increases if

A $$0 < x < \frac{\pi }{8}$$
B $$\frac{\pi }{4} < x < \frac{{3\pi }}{8}$$
C $$\frac{{3\pi }}{8} < x < \frac{{5\pi }}{8}$$
D $$\frac{{5\pi }}{8} < x < \frac{{3\pi }}{4}$$
Answer :   $$\frac{\pi }{4} < x < \frac{{3\pi }}{8}$$
Discuss Question

82. A spherical iron ball $$10\,cm$$  in radius is coated with a layer of ice of uniform thickness that melts at a rate of $$50\,c{m^3}/\min .$$   When the thickness of ice is $$5\,cm,$$  then the rate at which the thickness of ice decreases is

A $$\frac{1}{{36\pi }}cm/\min .$$
B $$\frac{1}{{18\pi }}cm/\min .$$
C $$\frac{1}{{54\pi }}cm/\min .$$
D $$\frac{5}{{6\pi }}cm/\min .$$
Answer :   $$\frac{1}{{18\pi }}cm/\min .$$
Discuss Question

83. Let the interval $$I = \left[ { - 1,\,4} \right]$$   and $$f:I \to R$$   be a function such that $$f\left( x \right) = {x^3} - 3x.$$    Then the range of the function is :

A $$\left[ {2,\,52} \right]$$
B $$\left[ { - 2,\,2} \right]$$
C $$\left[ { - 2,\,52} \right]$$
D none of these
Answer :   $$\left[ { - 2,\,52} \right]$$
Discuss Question

84. The straight line $$\frac{x}{a} + \frac{y}{b} = 2$$   touches the curve $${\left( {\frac{x}{a}} \right)^n} + {\left( {\frac{y}{b}} \right)^n} = 2$$    at the point $$\left( {a,\,b} \right)$$  for :

A $$n = 1,\,2$$
B $$n = 3,\,4,\, - 5$$
C $$n = 1,\,2,\,3$$
D any value of $$n$$
Answer :   any value of $$n$$
Discuss Question

85. A wire of length 2 units is cut into two parts which are bent respectively to form a square of side = $$x$$ units and a circle of radius = $$r$$ units. If the sum of the areas of the square and the circle so formed is minimum, then:

A $$x = 2r$$
B $$2x = r$$
C $$2x = \left( {\pi + 4} \right)r$$
D $$\left( {4 - \pi } \right)x = \pi r$$
Answer :   $$x = 2r$$
Discuss Question

86. A line is drawn through the point (1, 2) to meet the coordinate axes at $$P$$ and $$Q$$ such that it forms a triangle $$OPQ$$, where $$O$$ is the origin. If the area of the triangle $$OPQ$$   is least, then the slope of the line $$PQ$$ is :

A $$ - \frac{1}{4}$$
B $$ - 4$$
C $$ - 2$$
D $$ - \frac{1}{2}$$
Answer :   $$ - 2$$
Discuss Question

87. If water is poured into an inverted hollow cone whose semi-vertical angle is $${30^ \circ }.$$  Its depth (measured along the axis) increases at the rate of $$1\,cm/s.$$  The rate at which the volume of water increases when the depth is $$24\,cm$$  is :

A $$162\,c{m^3}/s$$
B $$172\,c{m^3}/s$$
C $$182\,c{m^3}/s$$
D $$192\,c{m^3}/s$$
Answer :   $$192\,c{m^3}/s$$
Discuss Question

88. The difference between greatest and least value of $$f\left( x \right) = 2\,\sin \,x + \sin \,2x,\,x\, \in \left[ {0,\,\frac{{3\pi }}{2}} \right]{\text{ is :}}$$

A $$\frac{{3\sqrt 3 }}{2}$$
B $$\frac{{3\sqrt 3 }}{2} - 2$$
C $$\frac{{3\sqrt 3 }}{2} + 2$$
D none of these
Answer :   $$\frac{{3\sqrt 3 }}{2} + 2$$
Discuss Question

89. The approximate value of $${\left( {0.007} \right)^{\frac{1}{3}}} = ?$$

A $$\frac{{23}}{{120}}$$
B $$\frac{{27}}{{120}}$$
C $$\frac{{19}}{{120}}$$
D $$\frac{{17}}{{120}}$$
Answer :   $$\frac{{23}}{{120}}$$
Discuss Question

90. What is the minimum value of $$px + qy\left( {p > 0,\,q > 0} \right)$$     when $$xy = {r^2}\,?$$

A $$2r\sqrt {pq} $$
B $$2\,pq\sqrt r $$
C $$ - 2r\sqrt {pq} $$
D $$2\,rpq$$
Answer :   $$2r\sqrt {pq} $$
Discuss Question


Practice More MCQ Question on Maths Section