171. If there is an error of $$k\% $$  in measuring the edge of a cube then the per cent error in estimating its volume is :

A $$k$$
B $$3k$$
C $$\frac{k}{3}$$
D none of these
Answer :   $$3k$$
Discuss Question

172. If the equation $${a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ......+ {a_1}x = 0$$
$${a_1} \ne 0,\,n \geqslant 2,$$   has a positive root $$x = \alpha ,$$  then the equation $$n{a_n}{x^{n - 1}} + \left( {n - 1} \right){a_{n - 1}}{x^{n - 2}} + ....... + {a_1} = 0$$         has a positive root, which is

A greater than $$\alpha $$
B smaller than $$\alpha $$
C greater than or equal to $$\alpha $$
D equal to $$\alpha $$
Answer :   smaller than $$\alpha $$
Discuss Question

173. The slope of the tangent to the curve $$y = \int_0^x {\frac{{dx}}{{1 + {x^3}}}} $$    at the point where $$x=1$$  is :

A $$\frac{1}{2}$$
B 1
C $$\frac{1}{4}$$
D none of these
Answer :   $$\frac{1}{2}$$
Discuss Question

174. If f: $$R \to R$$   is a twice differentiable function such that $$f''\left( x \right) > 0$$   for all $$x \in R,$$  and $$f\,f\left( {\frac{1}{2}} \right) = \frac{1}{2},f\left( 1 \right) = 1,$$     then

A $$f'\left( 1 \right) \leqslant 0$$
B $$0 < f'\left( 1 \right) \leqslant \frac{1}{2}$$
C $$\frac{1}{2} < f'\left( 1 \right) \leqslant 1$$
D $$f'\left( 1 \right) > 1$$
Answer :   $$f'\left( 1 \right) > 1$$
Discuss Question

175. The maximum value of $$f\left( x \right) = 3{\cos ^2}x + 4{\sin ^2}x + \cos \frac{x}{2} + \sin \frac{x}{2}$$        is :

A 4
B $$3 + \sqrt 2 $$
C $$4 + \sqrt 2 $$
D none of these
Answer :   $$4 + \sqrt 2 $$
Discuss Question

176. A value of $$c$$ for which conclusion of Mean Value Theorem holds for the function $$f\left( x \right) = {\log _e}x$$   on the interval [1, 3] is

A $${\log _3}e$$
B $${\log _e}3$$
C $$2{\log _3}e$$
D $$\frac{1}{2}{\log _3}e$$
Answer :   $$2{\log _3}e$$
Discuss Question

177. Two cyclists start from the junction of two perpendicular roads, their velocities being $$3\,v\,m/minute$$   and $$4\,v\,m/minute.$$   The rate at which the two cyclists are separating is :

A $$\frac{7}{2}\,v\,m/minute$$
B $$5\,v\,m/minute$$
C $$v\,m/minute$$
D None of these
Answer :   $$5\,v\,m/minute$$
Discuss Question

178. If the line joining the points $$\left( {0,\,3} \right)$$  and $$\left( {5,\, - 2} \right)$$  is a tangent to the curve $$y = \frac{c}{{x + 1}}$$   then the value of $$c$$ is :

A 1
B $$-2$$
C 4
D none of these
Answer :   4
Discuss Question

179. The normal to the curve $$x = a\left( {\cos \theta+\theta \sin \theta } \right),\,y = a\left( {\sin \theta -\theta \cos \theta } \right)$$         at any point $$'\theta '$$ is such that

A it passes through the origin
B it makes an angle $$\frac{\pi }{2} + \theta $$   with the $$x - $$axis
C it passes through $$\left( {a\frac{\pi }{2}, - a} \right)$$
D it is at a constant distance from the origin
Answer :   it is at a constant distance from the origin
Discuss Question

180. If an equation of a tangent to the curve, $$y = \cos \left( {x + y} \right),\, - 1 \leqslant x \leqslant 1 + \pi ,$$       is $$x + 2y = k$$   then $$k$$ is equal to :

A $$1$$
B $$2$$
C $$\frac{\pi }{4}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{2}$$
Discuss Question


Practice More MCQ Question on Maths Section