101. Let the function $$f\left( x \right)$$  be defined as follows:
\[f\left( x \right) = \left\{ \begin{array}{l} {x^3} + {x^2} - 10x,\, - 1 \le x < 0\\ \cos \,x,\,0 \le x < \frac{\pi }{2}\\ 1 + \sin \,x,\,\frac{\pi }{2} \le x \le \pi \end{array} \right.\]
Then $$f\left( x \right)$$  has :

A a local minimum at $$x = \frac{\pi }{2}$$
B a local maximum at $$x = \frac{\pi }{2}$$
C an absolute minimum at $$x=-1$$
D an absolute maximum at $$x = \pi $$
Answer :   a local maximum at $$x = \frac{\pi }{2}$$
Discuss Question

102. For all $$x \in \left( {0,1} \right)$$

A $${e^x} < 1 + x$$
B $${\log _e}\left( {1 + x} \right) < x$$
C $$\sin x > x$$
D $${\log _e}x > x$$
Answer :   $${\log _e}\left( {1 + x} \right) < x$$
Discuss Question

103. The curve $$y = x{e^x}$$   has minimum value equal to :

A $$ - \frac{1}{e}$$
B $$\frac{1}{e}$$
C $$ - e$$
D $$e$$
Answer :   $$ - \frac{1}{e}$$
Discuss Question

104. A wire $$34\,cm$$  long is to be bent in the form of a quadrilateral of which each angle is $${90^ \circ }.$$  What is the maximum area which can be enclosed inside the quadrilateral?

A $$68\,c{m^2}$$
B $$70\,c{m^2}$$
C $$71.25\,c{m^2}$$
D $$72.25\,c{m^2}$$
Answer :   $$72.25\,c{m^2}$$
Discuss Question

105. If $$P\left( x \right)$$  is a polynomial of degree less than or equal to 2 and $$S$$ is the set of all such polynomials so that $$P\left( 0 \right) = 0,\,P\left( 1 \right) = 1\,{\text{and}}\,P'\left( x \right) > 0\,\forall \,x \in \left[ {0,1} \right],\,{\text{then}}$$

A $$S = \phi $$
B $$S = ax + \left( {1 - a} \right){x^2}\forall a \in \left( {0,2} \right)$$
C $$S = ax + \left( {1 - a} \right){x^2}\forall a \in \left( {0,\infty } \right)$$
D $$S = ax + \left( {1 - a} \right){x^2}\forall a \in \left( {0,1} \right)$$
Answer :   $$S = ax + \left( {1 - a} \right){x^2}\forall a \in \left( {0,2} \right)$$
Discuss Question

106. The number of values of $$x$$ where the function $$f\left( x \right) = \cos \,x + \cos \left( {\sqrt 2 x} \right)$$     attains its maximum is :

A $$0$$
B $$1$$
C $$2$$
D infinite
Answer :   $$1$$
Discuss Question

107. The equation of the tangent to the curve $$y = {e^{ - \left| x \right|}}$$   at the point where the curve cuts the line $$x = 1$$  is :

A $$e\left( {x + y} \right) = 1$$
B $$y + ex = 1$$
C $$y + x = e$$
D none of these
Answer :   none of these
Discuss Question

108. For $$x \in \left( {0,\frac{{5\pi }}{2}} \right),$$   define $$f\left( x \right) = \int\limits_0^x {\sqrt t } \sin t\,dt.$$    Then $$f$$ has

A local minimum at $$\pi $$ and $$2\pi $$
B local minimum at $$\pi $$ and local maximum at $$2\pi $$
C local maximum at $$\pi $$ and local minimum at $$2\pi $$
D local maximum at $$\pi $$ and $$2\pi $$
Answer :   local maximum at $$\pi $$ and local minimum at $$2\pi $$
Discuss Question

109. The profit function, in rupees, of a firm selling $$x$$ items $$\left( {x \geqslant 0} \right)$$  per week is given by $$P\left( x \right) = - 3500 + \left( {400 - x} \right)x.$$       How many items should the firm sell so that the firm has maximum profit ?

A 400
B 300
C 200
D 100
Answer :   200
Discuss Question

110. What is the slope of the tangent to the curve $$x = {t^2} + 3t - 8,\,y = 2{t^2} - 2t - 5$$       at $$t = 2\,?$$

A $$\frac{7}{6}$$
B $$\frac{6}{7}$$
C $$1$$
D $$\frac{5}{6}$$
Answer :   $$\frac{6}{7}$$
Discuss Question


Practice More MCQ Question on Maths Section