146.
The solution set of $$\left| {\frac{{x + 1}}{x}} \right| + \left| {x + 1} \right| = \frac{{{{\left( {x + 1} \right)}^2}}}{{\left| x \right|}}$$ is
A
$$\left\{ {x\left| {x \geqslant 0} \right.} \right\}$$
Since $$\,2 - \sqrt 3 $$ is a root of the quadratic equation
$${x^2} + px + q = 0$$
$$\therefore \,\,2 + \sqrt 3 \,$$ is the root of unity
⇒ Sum of roots = 4, Product of roots = 1
$$\eqalign{
& \Rightarrow \,p = - 4,q = 1 \cr
& \Rightarrow \,{p^2} - 4q - 12 \cr
& = 16 - 4 - 12 \cr
& = 0 \cr} $$
148.
If $${\left( {\sqrt 2 } \right)^x} + {\left( {\sqrt 3 } \right)^x} = {\left( {\sqrt {13} } \right)^{\frac{x}{2}}}$$ then the number of values of $$x$$ is