121.
The number of values of $$a$$ for which $$\left( {{a^2} - 3a + 2} \right){x^2} + \left( {{a^2} - 5a + 6} \right)x + {a^2} - 4 = 0$$ is an identity in $$x$$ is
It is an identity in $$x$$ if $${a^2} - 3a + 2 = 0,{a^2} - 5a + 6 = 0,{a^2} - 4 = 0$$ hold at the same time.
122.
If $$a \cdot {3^{\tan x}} + a \cdot {3^{ - \tan x}} - 2 = 0$$ has real solutions, $$x \ne \frac{\pi }{2},0 \leqslant x \leqslant \pi ,$$ then the set of possible values of the parameter $$a$$ is
$$\eqalign{
& {\text{Let }}{3^{\tan x}} = y.\,{\text{Then }}ay + \frac{a}{y} - 2 = 0\,\,{\text{or, }}a{y^2} - 2y + a = 0. \cr
& D \geqslant 0 \cr} $$
$$ \Rightarrow \,\,4 - 4{a^2} \geqslant 0.$$ Also roots are positive as $$y = {3^{\tan x}} > 0.$$
∴ sum of the root $$ = \frac{2}{a} > 0$$
$$ \Rightarrow \,\,a > 0.$$
123.
Consider $$f\left( x \right) = {x^2} - 3x + a + \frac{1}{a},a \in R - \left\{ 0 \right\},$$ such that $$f\left( 3 \right) > 0$$ and $$f\left( 2 \right) \leqslant 0.$$ If $$\alpha $$ and $$\beta $$ are the roots of equation $$f\left( x \right) = 0 $$ then the value of $${\alpha ^2} + {\beta ^2}$$ is equal to
A
greater than 11
B
less than 5
C
5
D
depends upon $$a$$ and $$a$$ cannot be determined
124.
Let $$x + \frac{1}{x} = 1$$ and $$a, b$$ and $$c$$ are distinct positive integers such that $$\left( {{x^a} + \frac{1}{{{x^a}}}} \right) + \left( {{x^b} + \frac{1}{{{x^b}}}} \right) + \left( {{x^c} + \frac{1}{{{x^c}}}} \right) = 0.$$ Then the minimum value of $$\left( {a + b + c} \right)$$ is
Here, $$xy \geqslant 100.$$ Now, $${\left( {x + y} \right)^2} = {\left( {x - y} \right)^2} + 4xy \geqslant 400 + {\left( {x - y} \right)^2} \geqslant 400$$
∴ the smallest possible value of $$x + y$$ is $$20$$ $$\left( {\because \,\,x > 0,y > 0} \right).$$
126.
If $$\alpha ,\beta $$ are real and $${\alpha ^2},{\beta ^2}$$ are the roots of the equation $${a^2}{x^2} - x + 1 - {a^2} = 0\left( {\frac{1}{{\sqrt 2 }} < a < 1} \right)$$ and $${\beta ^2} \ne 1,{\text{then }}{\beta ^2} = $$
KEY CONCEPT : If both roots of a quadratic equation
$$a{x^2} + bx + c = 0$$ are less than $$k$$
then $$af\left( k \right) > 0,D \geqslant 0,\alpha + \beta < 2k.$$
$$\eqalign{
& f\left( x \right) = {x^2} - 2ax + {a^2} + a - 3 = 0, \cr
& f\left( 3 \right) > 0,\alpha + \beta < 6,D \geqslant 0. \cr
& \Rightarrow \,\,{a^2} - 5a + 6 > 0,a < 3, - 4a + 12 \geqslant 0 \cr
& \Rightarrow \,\,a < 2\,\,{\text{or }}a > 3,a < 3,a < 3 \cr
& \Rightarrow \,\,a < 2. \cr} $$
128.
Let $$ - \frac{\pi }{6} < \theta < - \frac{\pi }{{12}}.$$ Suppose $${\alpha _1}$$ and $${\beta _1}$$ are the roots of the equation $${x^2} - 2x\sec \alpha + 1 = 0$$ and $$\,{\alpha _2}$$ and $${\beta _2}$$ are the roots of the equation $${x^2} + 2x\tan \theta - 1 = 0.\,$$ If $${\alpha _1}\, > {\beta _1}$$ and $${\alpha _2}\, > {\beta _2}$$ then $$\,{\alpha _1}\, + {\beta _2}$$ equals
A
$$2\left( {\sec \theta - \tan \theta } \right)$$
Given equation is $$x - \frac{2}{{x - 1}} = 1 - \frac{2}{{x - 1}}$$
Clearly $$x \ne 1$$ for the given eqn. to be defined. If $$x - 1 \ne 0,$$ we can cancel the common term $$\frac{{ - 2}}{{x - 1}}$$ on both sides to get $$x = 1,$$ but it is not possible. So given eqn. has no roots.
∴ $${\text{(A)}}$$ is the correct answer.
130.
The least value of the expression $$2\,{\log _{10}}x - {\log _x}\left( {0.01} \right),$$ for $$x > 1,$$ is