171.
If $$x$$ is a real number such that $$x\left( {{x^2} + 1} \right),\left( { - \frac{1}{2}} \right){x^2},6$$ are three consecutive terms of an A.P. then the next two consecutive term of the A.P. are
$${\text{Using }}2\left( { - \frac{1}{2}{x^2}} \right) = x\left( {{x^2} + 1} \right) + 6,\,{\text{we get }}{x^3} + {x^2} + x + 6 = 0.\,{\text{By trial }}x = - 2\,\,{\text{satisfies it}}{\text{.}}$$
$$\therefore \,\,\left( {x + 2} \right)\left( {{x^2} - x + 3} \right) = 0$$
$$ \Rightarrow \,\,x = - 2\,\,{\text{because }}{x^2} - x + 3 = 0\,\,{\text{has }}D < 0.$$
∴ the given terms are $$- 10, - 2, 6,$$ where common difference = 8.
172.
The solution set of $${\left( x \right)^2} + {\left( {x + 1} \right)^2} = 25,$$ where $$(x)$$ is the least integer greater than or equal to $$x,$$ is
$${x^2} - 4 \ne 0$$
$$ \Rightarrow \,\,x \ne 2.$$ But the given equation implies that if $$x \ne 2$$ then $$x = 2.$$ This is a contradiction, so $$x$$ has no value
176.
If $${3^{x + 1}} = {6^{{{\log }_2}3}}$$ then $$x$$ is
$${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$$ Case I
$${x^2} - 5x + 5 = 1\,\,{\text{and }}{x^2} + 4x - 60$$ can be any real number
$$ \Rightarrow \,\,x = 1,4$$ Case II
$${x^2} - 5x + 5 = - 1\,\,{\text{and }}{x^2} + 4x - 60$$ has to be an even number
$$ \Rightarrow \,\,x = 2,3$$
where 3 is rejected because for $$x = 3,{x^2} + 4x - 60$$ is odd. Case III
$${x^2} - 5x + 5$$ can be any real number and $${x^2} + 4x - 60 = 0$$
$$ \Rightarrow \,\,x = - 10,6$$
⇒ Sum of all values of $$x = - 10 + 6 + 2 + 1 + 4 = 3$$
178.
If $$(1 - p)$$ is a root of quadratic equation $${x^2} + px + \left( {1 - p} \right) = 0$$ then its root are