Here $${b^2} - 24a \leqslant 0.\,{\text{Let }}3a + b = \lambda .$$
Then $${b^2} - 8\left( {\lambda - b} \right) \leqslant 0\,\,{\text{or, }}{b^2} + 8b - 8\lambda \leqslant 0.$$
Since $$b$$ is real, therefore, $$64 + 32\lambda \geqslant 0$$
$$\therefore \,\,\lambda \geqslant - 2.$$
183.
Let $$a, b, c$$ be the sides of a triangle where $$a \ne b \ne c\,\,{\text{and}}\,\,\lambda \in R.$$ If the roots of the equation $${x^2} + 2\left( {a + b + c} \right)x + 3\lambda \left( {ab + bc + ca} \right) = 0$$ are real, then
A
$$\lambda < \frac{4}{3}$$
B
$$\lambda > \frac{5}{3}$$
C
$$\lambda \in \left( {\frac{1}{3},\frac{5}{3}} \right)$$
D
$$\lambda \in \left( {\frac{4}{3},\frac{5}{3}} \right)$$
$$\because \,\,a,b,c$$ are sides of a triangle and $$a \ne b \ne c$$
$$\therefore \,\,\left| {a - b} \right| < \left| c \right|$$
$$\eqalign{
& \Rightarrow \,\,{a^2} + {b^2} - 2ab < {c^2} \cr
& {\text{Similarly, we get}} \cr
& {b^2} + {c^2} - 2bc < {a^2};{c^2} + {a^2} - 2ca < {b^2} \cr
& {\text{On adding, we get}} \cr
& {a^2} + {b^2} + {c^2} < 2\left( {ab + bc + ca} \right) \cr
& \Rightarrow \,\,\frac{{{a^2} + {b^2} + {c^2}}}{{ab + bc + ca}} < 2\,\,\,\,\,\,\,.....\left( 1 \right) \cr} $$
$$\because $$ Roots of the given equation are real
$$\eqalign{
& \therefore \,\,{\left( {a + b + c} \right)^2} - 3\lambda \left( {ab + bc + ca} \right) \geqslant 0 \cr
& \Rightarrow \,\,\frac{{{a^2} + {b^2} + {c^2}}}{{ab + bc + ca}} \geqslant 3\lambda - 2\,\,\,\,\,\,\,\,\,\,.....\left( 2 \right) \cr
& {\text{From}}\left( 1 \right){\text{and}}\left( 2 \right),{\text{we get}} \cr
& {\text{3}}\lambda - 2 < 2 \cr
& \Rightarrow \,\,\lambda < \frac{4}{3}. \cr} $$
184.
Let $$\alpha \,\,{\text{and }}\beta $$ be the roots of equation $${x^2} - 6x - 2 = 0.$$ If $${a_n} = {\alpha ^n} - {\beta ^n},$$ for $$n \geqslant 1,$$ then the value of $$\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}$$ is equal to:
187.
If $$\alpha ,\beta ,\gamma $$ be the roots of the equation $$x\left( {1 + {x^2}} \right) + {x^2}\left( {6 + x} \right) + 2 = 0$$ then the value of $${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}}$$ is
188.
If the roots of the quadratic equation $${x^2} + px + q = 0$$ are $$\tan {30^ \circ }$$ and $$\tan {15^ \circ }$$ respectively, then the value of $$2 + q – p$$ is
The sum of the co-efficients $$ = \left( {a + 2} \right) + \left( {a - 3} \right) - \left( {2a - 1} \right) = 0.\,{\text{So, }}x = 1$$ is a root.
∴ other root $$ = - \frac{{2a - 1}}{{a + 2}} = $$ rational for all $$a,a \ne - 2.$$
190.
If $$\alpha ,\beta $$ are roots of a $${x^2} + bx + b = 0,$$ then $$\sqrt {\frac{\alpha }{\beta }} + \sqrt {\frac{\beta }{\alpha }} + \sqrt {\frac{b}{a}} $$ is ( $${b^2} \geqslant 4ab,$$ $$a$$ and $$b$$ are of same sign)