181. If $$0 < a < b < c$$    and the roots $$\alpha ,\beta $$  of the equation $$ax^2 + bx + c = 0$$    are imaginary then incorrect statement is

A $$\left| \alpha \right| = \left| \beta \right|$$
B $$\left| \alpha \right| > 1$$
C $$\left| \beta \right| < 1$$
D None of these
Answer :   $$\left| \beta \right| < 1$$
Discuss Question

182. If $$a{x^2} + bx + 6 = 0$$    does not have two distinct real roots, where $$a \in R,b \in R,$$   then the least value of $$3a + b$$  is

A $$4$$
B $$- 1$$
C $$1$$
D $$- 2$$
Answer :   $$- 2$$
Discuss Question

183. Let $$a, b, c$$  be the sides of a triangle where $$a \ne b \ne c\,\,{\text{and}}\,\,\lambda \in R.$$     If the roots of the equation $${x^2} + 2\left( {a + b + c} \right)x + 3\lambda \left( {ab + bc + ca} \right) = 0$$         are real, then

A $$\lambda < \frac{4}{3}$$
B $$\lambda > \frac{5}{3}$$
C $$\lambda \in \left( {\frac{1}{3},\frac{5}{3}} \right)$$
D $$\lambda \in \left( {\frac{4}{3},\frac{5}{3}} \right)$$
Answer :   $$\lambda < \frac{4}{3}$$
Discuss Question

184. Let $$\alpha \,\,{\text{and }}\beta $$   be the roots of equation $${x^2} - 6x - 2 = 0.$$    If $${a_n} = {\alpha ^n} - {\beta ^n},$$   for $$n \geqslant 1,$$  then the value of $$\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}$$   is equal to:

A 3
B $$- 3$$
C 6
D $$- 6$$
Answer :   3
Discuss Question

185. The sum of the real roots of the equation $${x^2} + \left| x \right| - 6 = 0$$    is

A $$4$$
B $$0$$
C $$- 1$$
D none of these
Answer :   $$0$$
Discuss Question

186. If one root is square of the other root of the equation $${x^2} + px + q = 0,$$    then the relation between $$p$$ and $$q$$ is

A $${p^3} - q\left( {3p - 1} \right) + {q^2} = 0$$
B $${p^3} - q\left( {3p + 1} \right) + {q^2} = 0$$
C $${p^3} + q\left( {3p - 1} \right) + {q^2} = 0$$
D $${p^3} + q\left( {3p + 1} \right) + {q^2} = 0$$
Answer :   $${p^3} - q\left( {3p - 1} \right) + {q^2} = 0$$
Discuss Question

187. If $$\alpha ,\beta ,\gamma $$  be the roots of the equation $$x\left( {1 + {x^2}} \right) + {x^2}\left( {6 + x} \right) + 2 = 0$$       then the value of $${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}}$$    is

A $$ - 3$$
B $$ \frac{1}{2}$$
C $$ - \frac{1}{2}$$
D None of these
Answer :   $$ - \frac{1}{2}$$
Discuss Question

188. If the roots of the quadratic equation $${x^2} + px + q = 0$$    are $$\tan {30^ \circ }$$  and $$\tan {15^ \circ }$$  respectively, then the value of $$2 + q – p$$   is

A 2
B 3
C 0
D 1
Answer :   3
Discuss Question

189. The equation $$\left( {a + 2} \right){x^2} + \left( {a - 3} \right)x = 2a - 1,a \ne - 2$$        has roots rational for

A all rational values of $$a$$ except $$a = - 2$$
B all real values of $$a$$ except $$a = - 2$$
C rational values of $$a > \frac{1}{2}$$
D none of these
Answer :   all rational values of $$a$$ except $$a = - 2$$
Discuss Question

190. If $$\alpha ,\beta $$  are roots of a $${x^2} + bx + b = 0,$$    then $$\sqrt {\frac{\alpha }{\beta }} + \sqrt {\frac{\beta }{\alpha }} + \sqrt {\frac{b}{a}} $$    is ( $${b^2} \geqslant 4ab,$$  $$a$$ and $$b$$ are of same sign)

A 0
B 1
C 2
D $$2\sqrt {\frac{b}{a}} $$
Answer :   $$2\sqrt {\frac{b}{a}} $$
Discuss Question


Practice More MCQ Question on Maths Section