161. If $$a \in R$$  and the equation $$ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$$       (where $$\left[ x \right]$$ denotes the greatest integer $$ \leqslant x$$ ) has no integral solution, then all possible values of a lie in the interval:

A $$\left( { - 2, - 1} \right)$$
B $$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$$
C $$\left( { - 1,0} \right) \cup \left( {0,1} \right)$$
D $$\left( {1,2} \right)$$
Answer :   $$\left( { - 1,0} \right) \cup \left( {0,1} \right)$$
Discuss Question

162. If $$\alpha $$ and $$\beta $$ are the roots of $${x^2} + px + q = 0$$    and $${\alpha ^4},\,{\beta ^4}$$  are the roots of $${x^2} - rx + s = 0,$$    then the equation $${x^2} - 4qx + 2{q^2} - r = 0$$     has always
* Question has more than one correct option.

A two real roots
B two positive roots
C two negative roots
D one positive and one negative root
Answer :   one positive and one negative root
Discuss Question

163. If $$a,b,c \in R$$   and the equations $$a{x^2} + bx + c = 0,a \ne 0,$$     has real roots $$\alpha $$ and $$\beta $$ satisfying $$\alpha < - 1$$  and $$\beta > 1,$$  then $$1 + \frac{c}{a} + \left| {\frac{b}{a}} \right|\,{\text{is}}$$

A positive
B negative
C zero
D None
Answer :   negative
Discuss Question

164. The number of positive integral values of $$k$$ for which $$\left( {16{x^2} + 12x + 39} \right) + k\left( {9{x^2} - 2x + 11} \right)$$        is a perfect square is

A two
B zero
C one
D None of these
Answer :   one
Discuss Question

165. The equation $${x^2} - 6x + 8 + \lambda \left( {{x^2} - 4x + 3} \right) = 0,\lambda \in R,$$         has

A real and unequal roots for all $$\lambda $$
B real roots for $$\lambda < 0$$  only
C real roots for $$\lambda > 0$$  only
D real and unequal roots for $$\lambda = 0$$  only
Answer :   real and unequal roots for all $$\lambda $$
Discuss Question

166. Let $$f\left( x \right) = a{x^3} + 5{x^2} - bx + 1.$$      If $$f\left( x \right)$$  when divided by $$2x + 1$$  leaves $$5$$ as remainder, and $$f'\left( x \right)$$  is divisible by $$3x - 1$$  then

A $$a = 26,b = 10$$
B $$a = 24,b = 12$$
C $$a = 26,b = 12$$
D none of these
Answer :   $$a = 26,b = 12$$
Discuss Question

167. Let $$\alpha ,\beta $$  be the roots of the equation $${x^2} - px + r = 0\,\,{\text{and }}\frac{\alpha }{2},2\beta $$      be the roots of the equation $${x^2} - qx + r = 0.\,$$   Then the value of $$r$$ is

A $$\frac{2}{9}\left( {p - q} \right)\left( {2q - p} \right)$$
B $$\frac{2}{9}\left( {q - p} \right)\left( {2p - q} \right)$$
C $$\frac{2}{9}\left( {q - 2p} \right)\left( {2q - p} \right)$$
D $$\frac{2}{9}\left( {2p - q} \right)\left( {2q - p} \right)$$
Answer :   $$\frac{2}{9}\left( {2p - q} \right)\left( {2q - p} \right)$$
Discuss Question

168. The value of $$a$$ for which the sum of the squares of the roots of the equation $$2{x^2} - 2\left( {a - 2} \right)x - \left( {a + 1} \right) = 0$$       is least, is

A $$1$$
B $$\frac{3}{2}$$
C $$2$$
D None
Answer :   $$\frac{3}{2}$$
Discuss Question

169. If $$p, q, r$$  are +ve and are in A.P., the roots of quadratic equation $$p{x^2} + qx + r = 0$$     are all real for

A $$\left| {\frac{r}{p} - 7} \right| \geqslant 4\sqrt 3 $$
B $$\left| {\frac{p}{r} - 7} \right| \geqslant 4\sqrt 3 $$
C all $$p$$ and $$r$$
D no $$p$$ and $$r$$
Answer :   $$\left| {\frac{p}{r} - 7} \right| \geqslant 4\sqrt 3 $$
Discuss Question

170. Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation

A $${x^2} - 18x - 16 = 0$$
B $${x^2} - 18x + 16 = 0$$
C $${x^2} + 18x - 16 = 0$$
D $${x^2} + 18x + 16 = 0$$
Answer :   $${x^2} - 18x + 16 = 0$$
Discuss Question


Practice More MCQ Question on Maths Section