161.
If $$a \in R$$ and the equation $$ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$$ (where $$\left[ x \right]$$ denotes the greatest integer $$ \leqslant x$$ ) has no integral solution, then all possible values of a lie in the interval:
Consider $$ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0\,$$
$$\eqalign{
& \Rightarrow \,3{\left\{ x \right\}^2} - 2\left\{ x \right\} - {a^2} = 0\,\,\,\,\,\,\,\left( {\because \,x - \left[ x \right] = \left\{ x \right\}} \right) \cr
& \Rightarrow \,\,3\left( {{{\left\{ x \right\}}^2} - \frac{2}{3}\left\{ x \right\}} \right) = {a^2},a \ne 0 \cr
& \Rightarrow \,\,{a^2} = 3\left\{ x \right\}\left( {\left\{ x \right\} - \frac{2}{3}} \right) \cr} $$
$${\text{Now,}}\,\,\left\{ x \right\} \in \left( {0,1} \right)\,\,{\text{and }}\frac{{ - 2}}{3} \leqslant {a^2} < 1\,\,\,\,\left( {{\text{by graph}}} \right)$$
Since, $$x$$ is not an integer
$$\eqalign{
& \therefore \,\,a \in \left( { - 1,1} \right) - \left\{ 0 \right\} \cr
& \Rightarrow \,\,a \in \left( { - 1,0} \right) \cup \left( {0,1} \right) \cr} $$
162.
If $$\alpha $$ and $$\beta $$ are the roots of $${x^2} + px + q = 0$$ and $${\alpha ^4},\,{\beta ^4}$$ are the roots of $${x^2} - rx + s = 0,$$ then the equation $${x^2} - 4qx + 2{q^2} - r = 0$$ has always
* Question has more than one correct option.
From the first method,
$$\eqalign{
& q = \alpha \beta ,r = {\alpha ^4} + {\beta ^4}\,\,\,\,\,\,\,.....\left( 1 \right) \cr
& {\text{Product of the roots of the equation}} \cr
& {x^2} - 4qx + \left( {2{q^2} - r} \right) = 0 \cr
& = 2{q^2} - r = 2{\alpha ^2}{\beta ^2} - {\alpha ^4} - {\beta ^4} \cr
& = - {\left( {{\alpha ^2} - {\beta ^2}} \right)^2}\,\,\,\,\,\,\left[ {{\text{From}}\left( 1 \right)} \right] \cr
& = - \left( {{\text{positive quantity}}} \right) \cr
& = - ve{\text{ quantity}} \cr
& \Rightarrow \,\,{\text{one root is positive and other is negative}}{\text{.}} \cr} $$
163.
If $$a,b,c \in R$$ and the equations $$a{x^2} + bx + c = 0,a \ne 0,$$ has real roots $$\alpha $$ and $$\beta $$ satisfying $$\alpha < - 1$$ and $$\beta > 1,$$ then $$1 + \frac{c}{a} + \left| {\frac{b}{a}} \right|\,{\text{is}}$$
164.
The number of positive integral values of $$k$$ for which $$\left( {16{x^2} + 12x + 39} \right) + k\left( {9{x^2} - 2x + 11} \right)$$ is a perfect square is
166.
Let $$f\left( x \right) = a{x^3} + 5{x^2} - bx + 1.$$ If $$f\left( x \right)$$ when divided by $$2x + 1$$ leaves $$5$$ as remainder, and $$f'\left( x \right)$$ is divisible by $$3x - 1$$ then
167.
Let $$\alpha ,\beta $$ be the roots of the equation $${x^2} - px + r = 0\,\,{\text{and }}\frac{\alpha }{2},2\beta $$ be the roots of the equation $${x^2} - qx + r = 0.\,$$ Then the value of $$r$$ is
A
$$\frac{2}{9}\left( {p - q} \right)\left( {2q - p} \right)$$
B
$$\frac{2}{9}\left( {q - p} \right)\left( {2p - q} \right)$$
C
$$\frac{2}{9}\left( {q - 2p} \right)\left( {2q - p} \right)$$
D
$$\frac{2}{9}\left( {2p - q} \right)\left( {2q - p} \right)$$
As $$\alpha ,\beta $$ are the roots of $${x^2} - px + r = 0$$
$$\eqalign{
& \therefore \alpha + \beta = p\,\,\,\,\,\,\,\,\,\,\,.....\left( 1 \right) \cr
& {\text{and }}\alpha \beta = r\,\,\,\,\,\,\,.....\left( 2 \right) \cr} $$
Also $$\frac{\alpha }{2},2\beta $$ are the roots of $${x^2} - qx + r = 0$$
$$\therefore \,\,\frac{\alpha }{2} + 2\beta = q\,\,{\text{or }}\alpha + 4\beta = 2q\,\,\,\,\,\,\,.....\left( 3 \right)$$
Solving (1) and (3) for $$\alpha $$ and $$\beta $$ , we get
$$\beta = \frac{1}{3}\left( {2q - p} \right)\,\,{\text{and }}\alpha = \frac{2}{3}\left( {2q - q} \right)$$
Substituting values of $$\alpha $$ and $$\beta $$ , in equation (2),
we get $$\frac{2}{9}\left( {2p - q} \right)\left( {2q - p} \right) = r.$$
168.
The value of $$a$$ for which the sum of the squares of the roots of the equation $$2{x^2} - 2\left( {a - 2} \right)x - \left( {a + 1} \right) = 0$$ is least, is