191. Let $$\alpha \,\,{\text{and }}\beta $$   be the roots $${x^2} - 6x - 2 = 0,\,{\text{with }}\alpha > \beta .$$      If $${a_n} = {\alpha ^n} - {\beta ^n}\,\,{\text{for }}n \geqslant 1,$$     then the value of $$\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}\,\,{\text{is}}$$

A 1
B 2
C 3
D 4
Answer :   3
Discuss Question

192. Let $$a, b, c$$  be real numbers and $$a \ne 0.$$  If $$\alpha $$ is a root of $${a^2}{x^2} + bx + c = 0,\beta $$     is a root of $${a^2}{x^2} - bx - c = 0,$$    and $$0 < \alpha < \beta $$   then the equation $${a^2}{x^2} + 2bx + 2c = 0$$     has a root $$\gamma $$ that always satisfies

A $$\gamma = \frac{1}{2}\left( {\alpha + \beta } \right)$$
B $$\gamma = \alpha + \frac{\beta }{2}$$
C $$\gamma = \alpha $$
D $$\alpha < \gamma < \beta $$
Answer :   $$\alpha < \gamma < \beta $$
Discuss Question

193. If $$x$$ is real, the maximum value of $$\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}\,\,{\text{is}}$$

A $$\frac{1}{4}$$
B $$41$$
C $$1$$
D $$\frac{{17}}{7}$$
Answer :   $$41$$
Discuss Question

194. If $$x + y$$  and $$y + 3x$$  are two factors of the expression $$\lambda {x^3} - \mu {x^2}y + x{y^2} + {y^3}$$     then the third factor is

A $$y + 3x$$
B $$y - 3x$$
C $$y - x$$
D None of these
Answer :   $$y - 3x$$
Discuss Question

195. The number of values of the triplet $$(a, b, c)$$  for which $$a\cos 2x + b{\sin ^2}x + c = 0$$     is satisfied by all real $$x$$ is

A 0
B 2
C 3
D infinite
Answer :   infinite
Discuss Question


Practice More MCQ Question on Maths Section