151. Let $$R$$ = the set of real numbers, $$Z$$ = the set of integers, $$N$$ = the set of natural numbers. If $$S$$ be the solution set of the equation $${\left( x \right)^2} + {\left[ x \right]^2} = {\left( {x - 1} \right)^2} + {\left[ {x + 1} \right]^2},$$       where $$(x)$$ = the least integer greater than or equal to $$x$$ and $$[x]$$ = the greatest integer less than or equal to $$x,$$ then

A $$S = R$$
B $$S = R - Z$$
C $$S = R - N$$
D none of these
Answer :   $$S = R - Z$$
Discuss Question

152. If $$x - y$$  and $$y - 2x$$  are two factors of the expression $${x^3} - 3{x^2}y + \lambda x{y^2} + \mu {y^3}$$     then

A $$\lambda = 11,\mu = - 3$$
B $$\lambda = 3,\mu = - 11$$
C $$\lambda = \frac{{11}}{4},\mu = - \frac{3}{4}$$
D None of these
Answer :   $$\lambda = \frac{{11}}{4},\mu = - \frac{3}{4}$$
Discuss Question

153. Let $$p$$ and $$q$$ be real numbers such that $$p \ne 0,{p^3} \ne q\,\,{\text{and }}{p^3} \ne - q.$$     If $$\alpha \,\,{\text{and }}\beta $$  are non-zero complex numbers satisfying $$\alpha \,{\text{ + }}\,\beta = - p\,\,{\text{and}}\,\,{\alpha ^3} + {\beta ^3} = q,$$      then a quadratic equation having $$\frac{\alpha }{\beta }\,\,{\text{and }}\frac{\beta }{\alpha }$$  as its roots is

A $$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} + 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
B $$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} - 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
C $$\left( {{p^3} - q} \right){x^2} - \left( {5{p^3} - 2q} \right)x + \left( {{p^3} - q} \right) = 0$$
D $$\left( {{p^3} - q} \right){x^2} - \left( {5{p^3} + 2q} \right)x + \left( {{p^3} - q} \right) = 0$$
Answer :   $$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} - 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
Discuss Question

154. If both the roots of the equation $$x^2 – 2kx + k^2 – 4 = 0$$    lie between $$– 3$$ and $$5,$$ then which one of the following is correct ?

A $$ - 2 < k < 2$$
B $$ - 5 < k < 3$$
C $$ - 3 < k < 5$$
D $$ - 1 < k < 3$$
Answer :   $$ - 1 < k < 3$$
Discuss Question

155. A value of $$b$$ for which the equations
$$\eqalign{ & {x^2} + bx - 1 = 0 \cr & \,{x^2} + x + b = 0 \cr} $$
have one root in common is

A $$ - \sqrt 2 $$
B $$ - i\sqrt 3 $$
C $$ i\sqrt 5 $$
D $$ \sqrt 2 $$
Answer :   $$ - i\sqrt 3 $$
Discuss Question

156. The equation $${e^{\sin x}} - {e^{ - \sin x}} - 4 = 0$$     has :

A infinite number of real roots
B no real roots
C exactly one real root
D exactly four real roots
Answer :   no real roots
Discuss Question

157. The real number $$x$$ when added to its inverse gives the minimum value of the sum at $$x$$ equal to

A $$ - 2$$
B $$2$$
C $$1$$
D $$ - 1$$
Answer :   $$1$$
Discuss Question

158. If $$0 < a < 5, 0 < b < 5$$     and $$\frac{{{x^2} + 5}}{2} = x - 2\cos \left( {a + bx} \right)$$      is satisfied for at least one real $$x$$ then the greatest value of $$a + b$$  is

A $$\pi $$
B $$\frac{\pi }{2}$$
C $$3\pi $$
D $$4\pi $$
Answer :   $$3\pi $$
Discuss Question

159. If $$\cos \theta ,\sin \phi ,\sin \theta $$    are in G.P. then roots of $${x^2} + 2\cot \phi \cdot x + 1 = 0$$     are always

A equal
B real
C imaginary
D greater than 1
Answer :   real
Discuss Question

160. Let $$\left( {{x_0},{y_0}} \right)$$  be the solution of the following equations
$$\eqalign{ & {\left( {2x} \right)^{\ell n2}} = {\left( {3y} \right)^{\ell n3}} \cr & \,\,\,\,{3^{\ell nx}} = {2^{\ell ny}} \cr & {\text{Then }}\,{x_0}\,{\text{is}} \cr} $$

A $$\frac{1}{6}$$
B $$\frac{1}{3}$$
C $$\frac{1}{2}$$
D 6
Answer :   $$\frac{1}{2}$$
Discuss Question


Practice More MCQ Question on Maths Section